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Random Number Partitioning Problem (NPP)

Setup: Given n items X1,..., X, € R; partition them into two “bins” with total weights as close
as possible: min 4, > ieaXi — > ieac Xi|- Equivalently,

., where B,={-1,1}" and (0, X)= Z 0; X

1<i<n

(o, X)

min
oceb,

Our focus: X; are i.i.d. standard normal: X; 4 N(0,1).

Applications

Randomized controlled trials: Gold standard for clinical trials (Krieger et al!19; Harshaw et al.19).

= n persons with covariate info (age, weight, height,...) X; € R 1<i<n.
= Split into two groups (treatment and control) with similar “features’:

min | Xol|| , where X =(X1,Xy,...,X,)€ RAX™,
= Goal. Accurate inference for a treatment effect.

Many more applications: multiprocessor scheduling, VLS| design, cryptography,...

Available Guarantees

Existential: Let X 4 N(0,1),1 <i<niid. Then,

min }(0, X>| =3° (\/EQ_H) . w.h.p. as n — oo.
oceb,

Non-constructive. Extends to high dimensions: @(\/EQ_’”/CZ) for 2 < d < o(n) (Turner et al.20).
Algorithmic (Polynomial-Time): Largest Differencing Method (LDM) by Karmarkar and Karp'82.

Ford =1 and X d N(0,1),1 <i<niid;returns aoarq € By, such that

[(oaLa, X)| = 0=00g”n) Ko asn - oo,
Extends to high dimensions: exp (= (log?n/d)) for 2 < d < O(y/logn) (Turner et al.20).

A Statistical-to-Computational Gap

Gap between existential guarantees and what polynomial-time algorithms can promise.
= Our focus: Dimension d = 1. For X; 4 N(0,1),1 <i<niid.

min |(o, X)] = O(vn2™") s (oarg, X)| = 27O0e*n)
ocDp

= Ignoring y/n, a striking gap: 27" vs 2—6(log”n)

Source of this gap/hardness?

Study of Statistical-to-Computational Gap

Common feature in many algorithmic problems in high-dimensional statistics & random combi-
natorial structures: Random k-SAT, optimization over random graphs, p-spin model, planted cligue,
matrix PCA, linear regression, spiked tensor, largest submatrix problem...

Average-Case Problems: No analogue of worst-case theory (such as P # N P). Various Forms of
Rigorous Evidences of Hardness: low-degree methods, reductions from the planted clique, failure of
MCMC, failure of BP/AMP, 505 lower bounds,...

Overlap Gap Property (OGP)

Another approach from spin glass theory: Overlap Gap Property (OGP).

= Generic optimization problem with random &: mingeg L(0, £).
= (Informally) OGP for energy £ if 40 < v; < 19 s.t. w.h.p. over &, Vo, 09 € O,

L(oj,§) <& = distance(o1,09) <1vq or distance(oy, 09) > 1.

= Any two near optimal o1, o9 are either too similar or too dissimilar.

L(0,€)

<o

First algorithmic implication: Maximum independent set in Gy(n) and G(n, %) (Gamarnik and
Sudan’13). Many problems with OGP: random k-SAT, NAE-k-SAT, p-spin model, sparse PCA, largest
submatrix problem, max-CUT, planted clique,...

OGP as a Provable Barrier to Algorithms: WALKSAT, local algorithms, stable algorithms, low-degree
polynomials, AMP, MCMC, low-depth circuits...

Landscape Results: Presence of OGP

Algorithmic Hardness Results

Algorithm A : R" — B,,, potentially randomized.

Theorem. Ve € (1/2,1), 3p := p(e) € (0,1) such that if o, 0’ € By, achieve
(o, X)] = O(vn2™") and [{o’, X)| = O(v/n2™")

then either o = ¢’ or n=!|(0,0")| < pw.h.p. Thatis, n1|(c,0")| & (p, =2).

= Partitions achieving better than 27 are isolated vectors separated by ©(n) distance.
= Yields existence of a Free Energy Well (FEW): failure of Glauber dynamics.

Still large gap between 2=% and 2-00g’ ) |dea: Inspect m—tuples instead.

* Interpolate Y;(7) = v1 — 72X + 7X;, where Xy, ..., X, 4 N(0, I,) i.i.d.

= Study m—tuples o; € By, 1 <i < m, each near-optimal w.r.t. Y;(7;) (Ensemble m—OGP).
= Reduce thresholds further, and rule out sufficiently stable algorithms.

Theorem. Ve > 0, VZ C [0, 1] with |Z| =2°"), 3m e N, 31 > 8 > n > 0 s.t. if
{0, YVi(ri))| = O (Vn2™"), m,€Z, 1<i<m
then w.h.p. 31 < i < j < m such that n=1|(c;, o) & (B—mn,B).

Still  striking gap between 27  and 0—6(log”n) Unfortunately, m—OGP (with

m = O(1) absent for 27" New Idea: Study m—tuples with m = wy(1).
Theorem. Yw(y/nlogn) < E, < o(n), VI C [0,1] with |Z| = n®WY), Im,, € N, 31 > 8, > np > 0
s.t.if

(o3, Vi) < vn2™En, 7 e, 1<i<my

then w.h.p.31 < i < j < my, such that n™ Yoy, 05) & (Bn — 1, Bn).
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Stable Algorithms. Informally, A is stable if small change in X yields small change in A(X).
Success: 1
P (n_?HX, A(X))| < E) >1—py.
Stability: 3p € (0,1], X,V 2 A0, I,) with Cov(X,Y) = ply;
P (dpg (AX), A(Y)) < [+ L|X = YI3) > 1= pa.

Stable algorithms include approximate message passing (AMP) type algorithms (Gamarnik and
Jagannath’21) and the low-degree polynomials (Gamarnik, Jagannath, and Wein'20).

A Conjecture (verified by simulations): Largest differencing (LDM) algorithm is stable.

Theorem. Stable algorithms can't achieve value better than

exp | —w e
Y 10g1/5 n |

Semi-formally, Ve € (0,1/5), Yw(nlog=l/"T¢n) < E, < o(n), there is no stable A that

w.h.p.returns a o with energy 2~ £n (with appropriate f, p/,pf,pst).

" For extreme case, Ey, = O(n): rule out pr, psy = O(1).
= Proof Idea. By contradiction. Suppose 3A.

= m-OGP: a structure occurs with vanishing probability.
= Run A on correlated instances. Show that w.p. > 0, forbidden structure occurs.

- Rate 2~«(nlog™7n). v/ig Ramsey Theory.

Failure of MCMC: Let X < N (0, I,); define Hamiltonian H (o) = n_%Ka,X)\, and consider the
Gibbs distribution at inverse temperature § > 0 on By: mg(0) o exp(—FH(0)).

Construct G = (V, E) with V = By, and (0,0’) € E <= dy(o,0’) = 1; and consider any nearest
neighbor MC (Xy)¢>0 on G reversible w.r.t. 7.
Let (&)o™ = mingeg, H(o), and fore € (1/2,1], p := p(e) be the 2—OGP parameter. Set

1 1 n— 2

[1:{0-:_,0SE<0',0-*>§,0}, ]2:{0-:/0§5<0-70-*>§ n

}, and I3={o"}.

Theorem. For 5 = Q(n2"), w.h.p. (wrt. X 4 N (0, I,)), min {wﬁ (11),7p (I3)} > eQ(”)wﬂ (I7) .

I is a FEW with exponentially small Gibbs mass separating I3 and I; U I, U I5. Exit time from
well is exponential: Slow mixing.

Future Directions

= Formally verifying stability of LDM.

= Proving algorithmic hardness all the way to g—w(vnlogn) Rate 9—w(nlog
Ramsey.

= Still a significant gap o—w(vnlogn) g 9—0O(log”n)

- Either prove hardness for 2-«(e’n). OGP not applicable. 2
- Or devise a better (polynomial-time) algorithm achieving 2-«oe"n),

= Slow mixing for higher temperatures (smaller 3); or for different initialization, e.g. uniform case.

o) unimprovable by

Can OGP rule out all polynomial-time algorithms? s there a problem with OGP yet admitting a
polynomial-time algorithm?
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