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Random Number Partitioning Problem (NPP)

Setup: Given n items X1, . . . , Xn ∈ R; partition them into two “bins” with total weights as close

as possible: minA⊂[n]
∣∣∑

i∈A Xi −
∑

i∈Ac Xi

∣∣. Equivalently,
min

σ∈Bn

∣∣∣〈σ, X〉
∣∣∣, where Bn = {−1, 1}n and 〈σ, X〉 =

∑
1≤i≤n

σiXi.

Our focus: Xi are i.i.d. standard normal: Xi
d= N (0, 1).

Applications

Randomized controlled trials: Gold standard for clinical trials (Krieger et al.’19; Harshaw et al.’19).

n persons with covariate info (age, weight, height,...) Xi ∈ Rd, 1 ≤ i ≤ n.

Split into two groups (treatment and control) with similar “features”:

min
σ∈Bn

∥∥Xσ
∥∥

∞, where X = (X1, X2, . . . , Xn) ∈ Rd×n.

Goal. Accurate inference for a treatment effect.

Many more applications: multiprocessor scheduling, VLSI design, cryptography,…

Available Guarantees

Existential: Let Xi
d= N (0, 1), 1 ≤ i ≤ n i.i.d. Then,

min
σ∈Bn

∣∣〈σ, X〉
∣∣ = Θ

(√
n2−n) , w.h.p. as n → ∞.

Non-constructive. Extends to high dimensions: Θ
(√

n2−n/d
)
for 2 ≤ d ≤ o(n) (Turner et al.’20).

Algorithmic (Polynomial-Time): Largest Differencing Method (LDM) by Karmarkar and Karp’82.

For d = 1 and Xi
d= N (0, 1), 1 ≤ i ≤ n i.i.d.; returns a σALG ∈ Bn such that∣∣〈σALG, X〉

∣∣ = 2−Θ(log2 n) w.h.p. as n → ∞.

Extends to high dimensions: exp
(
−Ω

(
log2 n/d

))
for 2 ≤ d ≤ O(

√
log n) (Turner et al.’20).

A Statistical-to-Computational Gap

Gap between existential guarantees and what polynomial-time algorithms can promise.

Our focus: Dimension d = 1. For Xi
d= N (0, 1), 1 ≤ i ≤ n i.i.d.

min
σ∈Bn

|〈σ, X〉| = Θ(
√

n2−n) vs |〈σALG, X〉| = 2−Θ(log2 n).

Ignoring
√

n, a striking gap: 2−n vs 2−Θ(log2 n).

Source of this gap/hardness?

Study of Statistical-to-Computational Gap

Common feature in many algorithmic problems in high-dimensional statistics & random combi-

natorial structures: Random k-SAT, optimization over random graphs, p-spin model, planted clique,

matrix PCA, linear regression, spiked tensor, largest submatrix problem...

Average-Case Problems: No analogue of worst-case theory (such as P 6= NP ). Various Forms of

Rigorous Evidences of Hardness: low-degree methods, reductions from the planted clique, failure of

MCMC, failure of BP/AMP, SoS lower bounds,...

Overlap Gap Property (OGP)

Another approach from spin glass theory: Overlap Gap Property (OGP).

Generic optimization problem with random ξ: minθ∈Θ L(σ, ξ).
(Informally) OGP for energy E if ∃0 < ν1 < ν2 s.t. w.h.p. over ξ, ∀σ1, σ2 ∈ Θ,

L(σj, ξ) ≤ E =⇒ distance(σ1, σ2) < ν1 or distance(σ1, σ2) > ν2.

Any two near optimal σ1, σ2 are either too similar or too dissimilar.

First algorithmic implication: Maximum independent set in Gd(n) and G(n, d
n) (Gamarnik and

Sudan’13). Many problems with OGP: random k-SAT, NAE-k-SAT, p-spin model, sparse PCA, largest

submatrix problem, max-CUT, planted clique,...

OGP as a Provable Barrier to Algorithms: WALKSAT, local algorithms, stable algorithms, low-degree

polynomials, AMP, MCMC, low-depth circuits...

Landscape Results: Presence of OGP

Theorem. ∀ε ∈ (1/2, 1), ∃ρ := ρ(ε) ∈ (0, 1) such that if σ, σ′ ∈ Bn achieve

|〈σ, X〉| = O(
√

n2−εn) and |〈σ′, X〉| = O(
√

n2−εn)
then either σ = σ′ or n−1|〈σ, σ′〉| ≤ ρ w.h.p. That is, n−1|〈σ, σ′〉| /∈ (ρ, n−2

n ].

Partitions achieving better than 2−n
2 are isolated vectors separated by Θ(n) distance.

Yields existence of a Free EnergyWell (FEW): failure of Glauber dynamics.

Still large gap between 2−n
2 and 2−Θ(log2 n). Idea: Inspect m−tuples instead.

Interpolate Yi(τ ) =
√

1 − τ2X0 + τXi, where X0, . . . , Xm
d= N (0, In) i.i.d.

Study m−tuples σi ∈ Bn, 1 ≤ i ≤ m, each near-optimal w.r.t. Yi(τi) (Ensemble m−OGP).

Reduce thresholds further, and rule out sufficiently stable algorithms.

Theorem. ∀ε > 0, ∀I ⊂ [0, 1] with |I| = 2o(n), ∃m ∈ N, ∃1 > β > η > 0 s.t. if
|〈σi, Yi(τi)〉| = O

(√
n2−εn) , τi ∈ I, 1 ≤ i ≤ m

then w.h.p. ∃1 ≤ i < j ≤ m such that n−1|〈σi, σj〉| /∈ (β − η, β).
Still striking gap between 2−εn and 2−Θ(log2 n). Unfortunately, m−OGP (with

m = O(1)) absent for 2−o(n). New Idea: Study m−tuples with m = ωn(1).
Theorem. ∀ω(

√
n log n) ≤ En ≤ o(n), ∀I ⊂ [0, 1] with |I| = nO(1), ∃mn ∈ N, ∃1 > βn > ηn > 0

s.t. if

|〈σi, Yi(τi)〉| ≤
√

n2−En, τi ∈ I, 1 ≤ i ≤ mn

then w.h.p. ∃1 ≤ i < j ≤ mn such that n−1〈σi, σj〉 /∈ (βn − ηn, βn).

Algorithmic Hardness Results

Algorithm A : Rn → Bn, potentially randomized.

Stable Algorithms. Informally, A is stable if small change in X yields small change in A(X).
Success:

P
(

n−1
2|〈X, A(X)〉| ≤ E

)
≥ 1 − pf .

Stability: ∃ρ ∈ (0, 1], X, Y
d= N (0, In) with Cov(X, Y ) = ρIn;

P
(

dH (A(X), A(Y )) ≤ f + L‖X − Y ‖2
2
)

≥ 1 − pst.

Stable algorithms include approximate message passing (AMP) type algorithms (Gamarnik and

Jagannath’21) and the low-degree polynomials (Gamarnik, Jagannath, and Wein’20).

A Conjecture (verified by simulations): Largest differencing (LDM) algorithm is stable.

Theorem. Stable algorithms can’t achieve value better than

exp

(
−ω

(
n

log1/5 n

))
.

Semi-formally, ∀ε ∈ (0, 1/5), ∀ω(n log−1/5+ε n) ≤ En ≤ o(n), there is no stable A that

w.h.p. returns a σ with energy 2−En (with appropriate f, ρ′, pf , pst).

For extreme case, En = Θ(n): rule out pf , pst = O(1).
Proof Idea. By contradiction. Suppose ∃A.

m-OGP: a structure occurs with vanishing probability.

Run A on correlated instances. Show that w.p.> 0, forbidden structure occurs.

Rate 2−ω(n log−1/5 n): Via Ramsey Theory.

Failure of MCMC: Let X
d= N (0, In); define Hamiltonian H(σ) , n−1

2|〈σ, X〉|, and consider the

Gibbs distribution at inverse temperature β > 0 on Bn: πβ(σ) ∝ exp
(
−βH(σ)

)
.

Construct G = (V, E) with V = Bn and (σ, σ′) ∈ E ⇐⇒ dH(σ, σ′) = 1; and consider any nearest

neighbor MC (Xt)t≥0 on G reversible w.r.t. πβ.

Let (±)σ∗ = minσ∈Bn
H(σ), and for ε ∈ (1/2, 1], ρ := ρ(ε) be the 2−OGP parameter. Set

I1 =
{

σ : −ρ ≤ 1
n

〈σ, σ∗〉 ≤ ρ
}

, I2 =
{

σ : ρ ≤ 1
n

〈σ, σ∗〉 ≤ n − 2
n

}
, and I3 = {σ∗}.

Theorem. For β = Ω(n2nε), w.h.p. (w.r.t. X
d= N (0, In)), min

{
πβ (I1) , πβ (I3)

}
≥ eΩ(n)πβ (I2) .

I2 is a FEW with exponentially small Gibbs mass separating I3 and I1 ∪ I2 ∪ I3. Exit time from

well is exponential: Slow mixing.

Future Directions

Formally verifying stability of LDM.

Proving algorithmic hardness all the way to 2−ω(
√

n log n). Rate 2−ω(n log−1/5 n) unimprovable by

Ramsey.

Still a significant gap 2−ω(
√

n log n) vs 2−Θ(log2 n).
- Either prove hardness for 2−ω(log2 n): OGP not applicable.
- Or devise a better (polynomial-time) algorithm achieving 2−ω(log2 n).

Slow mixing for higher temperatures (smaller β); or for different initialization, e.g. uniform case.

Can OGP rule out all polynomial-time algorithms? Is there a problem with OGP yet admitting a

polynomial-time algorithm?
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