Symmetric Perceptron with Random Labels

Eren C. Kızıldağ (Columbia University)

Joint work with Tanay Wakhare (MIT)

SampTA 2023

July 10, 2023

Symmetric Binary Perceptron (SBP)

Introduced by Aubin, Perkins, and Zdeborová [APZ19].

- Fix $\kappa, \alpha > 0$. Generate iid $X_i \stackrel{d}{=} \mathcal{N}(0, I_n), 1 \le i \le M$, where $M = \lfloor n\alpha \rfloor$.
- Consider (random) set

$$S_{\alpha}(\kappa) = \{ \sigma \in \Sigma_n : |\langle \sigma, X_i \rangle| \le \kappa \sqrt{n}, \forall i \}, \text{ where } \Sigma_n \triangleq \{-1, 1\}^n.$$

Motivation:

Toy NN, random CSP, average-case discrepancy...

Perceptron Model: Motivation

Toy NN, storing patterns [Wen62, Cov65]. Popular in stat phys [Gar87, GD88, Gar88].

- Patterns $X_i \in \mathbb{R}^n$, activation function $U : \mathbb{R} \to \{0,1\}$.
- Storage wrt U: Find a $\sigma \in \Sigma_n$ s.t. $U(\langle \sigma, X_i \rangle) = 1, \forall i$.
- Capacity: Max # of stored patterns M^* . Stat phys prediction for M^*/n as $n \to \infty$.

SBP:
$$U(x) = \mathbb{1}\{|x| \le \kappa \sqrt{n}\}$$
. Asymmetric version: $U(x) = \mathbb{1}\{x > \kappa \sqrt{n}\}$.

- SBP is structurally similar to asymmetric version [BDVLZ20].
- Mathematically easier. Analogy with k-SAT vs NAE-k-SAT.

Perceptron Model: Motivation

Random CSP

- Each constraint $X_i \in \mathbb{R}^n$ rules out certain $\sigma \in \Sigma_n$.
- $\alpha = M/n$ is constraint density.

Random CSPs: Existence of solns, sol space geometry, limits of efficient algs...

Average-Case Discrepancy Minimization

- Given $\mathcal{M} \in \mathbb{R}^{M \times n}$, compute or bound its **discrepancy** $\min_{\sigma \in \Sigma_n} \|\mathcal{M}\sigma\|_{\infty}$.
- Vast literature [Spe85, Mat99, BS20]...

SBP: A Sharp Phase Transition

Recall
$$X_i \stackrel{d}{=} \mathcal{N}(0, I_n), 1 \le i \le M = \lfloor n\alpha \rfloor$$
 iid and $S_{\alpha}(\kappa) = \{\sigma \in \Sigma_n : |\langle \sigma, X_i \rangle| \le \kappa \sqrt{n}, \forall i\}.$

Sharp Phase Transition [Perkins-Xu'21, Abbe-Li-Sly'21]

$$\lim_{n\to\infty} \mathbb{P}\big[S_{\alpha}(\kappa)\neq\varnothing\big] = \begin{cases} 1, & \text{if } \alpha<\alpha_c(\kappa)\\ 0, & \text{if } \alpha>\alpha_c(\kappa) \end{cases}, \quad \text{where} \quad \alpha_c(\kappa) = -1/\log_2 \mathbb{P}\big[|\mathcal{N}(0,1)|\leq\kappa\big].$$

 $\alpha_c(\kappa)$ matches first moment prediction: $\mathbb{E}[|S_\alpha(\kappa)|] = o(1)$ iff $\alpha > \alpha_c(\kappa)$.

For $\alpha < \alpha_c(\kappa)$:

- [APZ19]: $\liminf_{n} p_{\alpha}(\kappa) > 0$ by 2nd Moment Method.
- [PX21, ALS21]: $\lim_{n} p_{\alpha}(\kappa) = 1 o(1)$. More delicate tools.

SBP: A Statistical-to-Computational Gap

Gap between existential & best known algorithmic guarantees.

Random CSPs, optimization over random graphs, spin glasses...

Statistical-to-Computational Gap in SBP

- Let $\kappa \to 0$ (after $n \to \infty$). Then $\alpha_c(\kappa) \sim 1/\log(1/\kappa)$.
- $S_{\alpha}(\kappa) \neq \emptyset$ if $\alpha < 1/\log(1/\kappa)$. Poly-time algs work only when $\alpha = O(\kappa^2)$ [BS20].

Origins of this gap?

- Intricate geometry of sol space.
- Overlap Gap Property [GKPX22].

SBP: Solution Space Geometry and Limits of Algorithms

Theorem (Gamarnik, K., Perkins, and Xu, FOCS 2022 & COLT 2023)

- SBP exhibits Ensemble multi-Overlap Gap Property (as $\kappa \to 0$) whp if $\alpha = \Omega(\kappa^2 \log \frac{1}{\kappa})$.
- For $\alpha = \Omega(\kappa^2 \log \frac{1}{\kappa})$, there is **no stable alg** for SBP that succeeds w.p. O(1).
- For $\alpha = \Omega(\kappa^2)$, there is no online alg for SBP that succeeds w.p. $\geq \exp(-\Theta(n))$.
- Kim-Roche algorithm [KR98] is stable.
- **Stable algs** also include low-degree polynomials, and AMP.
- Online algs include Bansal-Spencer [BS20], our benchmark.

Symmetric Perceptron with Random Labels

Fix $\kappa, \alpha > 0$. Generate iid $X_i \stackrel{d}{=} \mathcal{N}(0, I_n), 1 \le i \le M$, where $M = \lfloor n\alpha \rfloor$. Activation $U(x) = \mathbb{1}\{|x| \le \kappa \sqrt{n}\}$. Parameter $p \in [0, 1]$.

• **Model I:** Let $Y_i \sim \text{Bern}(p)$, $1 \le i \le M$ be iid. Set

$$S_{\alpha}(\kappa, p) = \{ \sigma \in \Sigma_n : Y_i = U(\langle \sigma, X_i \rangle), \forall i \}$$

• Model II: Choose a $\mathcal{I} \subset \{1, ..., M\}$ with $|\mathcal{I}| = Mp$ uar, let $Y_i = \mathbb{1}\{i \in \mathcal{I}\}$. Set

$$\widetilde{S}_{\alpha}(\kappa, p) = \{ \sigma \in \Sigma_n : Y_i = U(\langle \sigma, X_i \rangle), \forall i \}$$

Case p = 1 corresponds to SBP.

Also captures $U(x) = \mathbb{1}\{|x| > \kappa \sqrt{n}\}$ by considering **dual** labels $1 - Y_i$.

Comparing Models I and II

- If $Y_i \sim \text{Bern}(p)$ are iid, then $|\{i: Y_i = 1\}| = Mp + O(\sqrt{M})$ due to **concentration**.
- Y_i are **not independent** under Model II: for p < 1,

$$\mathbb{P}\big[j \in \mathcal{I} \mid i \in \mathcal{I}\big] = \binom{M-1}{Mp-1} / \binom{M}{Mp} = \frac{Mp-1}{M-1} < p.$$

Models are not exactly the same. Capacity threshold.

Machine Learning View

- Data $(X_i, Y_i) \in \mathbb{R}^n \times \{0, 1\}, 1 \le i \le M$, find the **best fit** $f(\cdot, \sigma), \sigma \in \theta$.
- Solve the empirical risk minimization:

$$\min_{\sigma \in \theta} \widehat{\mathcal{L}}(\sigma)$$
, where $\widehat{\mathcal{L}}(\sigma) = \frac{1}{M} \sum_{1 \leq i \leq M} \ell(Y_i; f(X_i, \sigma))$.

- Let $\theta = \Sigma_n$, $\ell(y; x) = \mathbb{1}\{y \neq x\}$ and $f(X_i, \sigma) = U(\langle \sigma, X_i \rangle)$.
- Satisfying sol to CSP are interpolators of ER:

$$S_{\alpha}(\kappa, p) = \{ \sigma \in \Sigma_n : \widehat{\mathcal{L}}(\sigma) = 0 \}.$$

Negative Spherical Perceptron

 $Y_i\langle \sigma, X_i\rangle \geq \kappa$, $\|\sigma\|_2 = 1$. Rigorously studied by Montanari et al. [MZZ21].

Main Results: A Sharp Phase Transition for Expected Cardinality

Let $q(\kappa) = \mathbb{P}[|\mathcal{N}(0,1)| \leq \kappa]$.

Theorem (K. and Wakhare, 2023)

Model I: Let $\alpha_c(\kappa, p) = -1/\log_2(pq(\kappa) + (1-p)(1-q(\kappa)))$. Then,

$$\mathbb{E}[|S_{\alpha}(\kappa, p)|] = \begin{cases} \exp(-\Theta(n)), & \text{if } \alpha > \alpha_{c}(\kappa, p) \\ \exp(\Theta(n)), & \text{if } \alpha < \alpha_{c}(\kappa, p) \end{cases}$$

Model II: Let $\widetilde{\alpha}_c(\kappa, p) = -1/(p \log_2 q(\kappa) + (1-p) \log_2 (1-q(\kappa))$. Then,

$$\mathbb{E}[|\widetilde{S}_{\alpha}(\kappa, p)|] = \begin{cases} \exp(-\Theta(n)), & \text{if } \alpha > \widetilde{\alpha}_{c}(\kappa, p) \\ \exp(\Theta(n)), & \text{if } \alpha < \widetilde{\alpha}_{c}(\kappa, p). \end{cases}$$

In particular, $S_{\alpha}(\kappa, p) = \emptyset$ whp for $\alpha > \alpha_{c}(\kappa, p)$ and $\widetilde{S}_{\alpha}(\kappa, p) = \emptyset$ whp for $\alpha > \widetilde{\alpha}_{c}(\kappa, p)$.

Sharp Phase Transition for Expected Cardinality

Proof Sketch

• Based on **first moment method**. Fix $\sigma \in \Sigma_n$. Then,

$$\mathbb{P}\big[\boldsymbol{\sigma} \in \mathcal{S}_{\alpha}(\kappa, p)\big] = \mathbb{P}\big[Y_i = U(\langle \boldsymbol{\sigma}, X_i \rangle), \forall i\big] = \big(pq(\kappa) + (1-p)(1-q(\kappa)\big)^{\alpha n}.$$

• By linearity of expectatation,

$$\mathbb{E}[|S_{\alpha}(\kappa,p)|] = 2^{n} \cdot \left(pq(\kappa) + (1-p)(1-q(\kappa))^{\alpha n} = \exp_{2}\left(n\left(1-\frac{\alpha}{\alpha_{c}(\kappa,p)}\right)\right)\right)$$

- $n^{-1} \log \mathbb{E}[|S_{\alpha}(\kappa, p)|]$ is annealed free energy in stat phys.
- So, $\alpha_c(\kappa, p)$, $\widetilde{\alpha}_c(\kappa, p)$ is annealed capacity.

 $n^{-1}\mathbb{E}[\log |S_{\alpha}(\kappa, p)|]$ is quenched free energy. Harder to study.

Model with Independent Labels Have Higher Annealed Capacity

- Model I: IID labels, $\alpha_c(\kappa, p) = -1/\log_2(pq(\kappa) + (1-p)(1-q(\kappa)))$.
- Model II: Dependent labels, $\widetilde{\alpha}_c(\kappa, p) = -1/(p \log_2 q(\kappa) + (1-p) \log_2 (1-q(\kappa))$.
- As $x \mapsto \log_2 x$ is concave, Jensen's inequality yields $\alpha_c(\kappa, p) \ge \widetilde{\alpha}_c(\kappa, p)$.

Model I with iid labels has higher annealed capacity.

Capacity vs dependence structure for other random CSPs?

Main Results: Universality for Annealed Capacity

Annealed capacity do **not** depend on distributional details.

Theorem (K. and Wakhare, 2023)

$$\alpha_c(\kappa, p)$$
 and $\widetilde{\alpha}_c(\kappa, p)$ remains the same if $X_i = (X_i(j) : 1 \le j \le n)$ has iid coordinates with

$$\mathbb{E}[X_i(1)] = 0$$
, $\mathbb{E}[X_i(1)^2] > 0$, and $\mathbb{E}[|X_i(1)^3|] < \infty$.

- Proof based on Berry-Esseen Theorem.
- Related result: [GKPX22] establish universality for Ensemble-m-OGP in SBP.

A Sharp Phase Transition Conjecture

Large $\mathbb{E}[|S_{\alpha}(\kappa, p)|]$ does not mean $S_{\alpha}(\kappa, p) \neq \emptyset$ whp.

1st moment **prediction** for SBP is **correct** [PX21, ALS21].

Conjecture

 $\exists \kappa^* > 0$ such that for every $\kappa < \kappa^*$ and $p \in [0,1]$,

$$\lim_{n\to\infty} \mathbb{P}[S_{\alpha}(\kappa,p)
eq \varnothing] = egin{cases} 0, & ext{if } lpha > lpha_c(\kappa,p) \ 1, & ext{if } lpha < lpha_c(\kappa,p), \end{cases}$$

$$\lim_{n\to\infty}\mathbb{P}[\widetilde{S}_{\alpha}(\kappa,p)\neq\varnothing] = \begin{cases} 0, & \text{if } \alpha > \widetilde{\alpha}_{c}(\kappa,p) \\ 1, & \text{if } \alpha < \widetilde{\alpha}_{c}(\kappa,p). \end{cases}$$

For p=0, moment method works only for $\kappa < \kappa^* \approx 0.817$ [APZ19]. **RSB** for $\kappa > \kappa^*$.

Main Results: An Evidence Towards Sharp PT Conjecture

Theorem (K. and Wakhare, 2023)

 $\forall \kappa > 0$, $\exists p_{\kappa}^* < 1$ such that the following holds. Fix any $p \in [p_{\kappa}^*, 1]$, $\alpha < \widetilde{\alpha}_c(\kappa, p)$. Then,

$$\liminf_{n\to\infty} \mathbb{P} ig[\widetilde{\mathcal{S}}_{lpha}(\kappa, p)
eq \varnothing ig] > 0.$$

 $\forall \kappa \in (0, 0.817)$, $\exists p_{\kappa}^{**} > 0$ such that the following holds. Fix any $p \in [0, p_{\kappa}^{**}]$, $\alpha < \widetilde{\alpha}_c(\kappa, p)$. Then,

$$\liminf_{n\to\infty}\mathbb{P}\big[\widetilde{S}_{\alpha}(\kappa,p)\neq\varnothing\big]>0.$$

- Covers p close to 1 (SBP) and close to 0 (u-function binary perceptron).
- Based on 2nd moment method [AM02, APZ19].
- Contingent on an assumption regarding a real function [DS19, APZ19, PX21].

Proof Idea

Based on second moment method.

Let
$$Z = |\widetilde{S}_{\alpha}(\kappa, p)|$$
. Goal: $\liminf_{n \to \infty} \mathbb{P}[Z \ge 1] > 0$.

Paley-Zygmund Inequality

$$\mathbb{P}[Z \geq 1] = \mathbb{P}[Z > 0] \geq \frac{\mathbb{E}[Z]^2}{\mathbb{E}[Z^2]}.$$

To prove: $\mathbb{E}[Z^2] = \Theta(\mathbb{E}[Z]^2)$. Laplace's method [AM02].

Future Directions

- Sharp PT analogous to SBP [PX21, ALS21].
- Interplay between capacity and dependence structure.
- Other perceptron models, e.g. spherical case or different activations.
- Polynomial-time algs for finding a $\sigma \in S_{\alpha}(\kappa, p)$.
- Limits of algs. Solution space geometry and OGP.

References I

- Emmanuel Abbe, Shuangping Li, and Allan Sly, *Proof of the contiguity conjecture and lognormal limit for the symmetric perceptron*, arXiv preprint arXiv:2102.13069 (2021).
- Dimitris Achlioptas and Cristopher Moore, *The asymptotic order of the random k-sat threshold*, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings., IEEE, 2002, pp. 779–788.
- Benjamin Aubin, Will Perkins, and Lenka Zdeborová, *Storage capacity in symmetric binary perceptrons*, Journal of Physics A: Mathematical and Theoretical **52** (2019), no. 29, 294003.
- Carlo Baldassi, Riccardo Della Vecchia, Carlo Lucibello, and Riccardo Zecchina, *Clustering of solutions in the symmetric binary perceptron*, Journal of Statistical Mechanics: Theory and Experiment **2020** (2020), no. 7, 073303.
- Nikhil Bansal and Joel H. Spencer, *On-line balancing of random inputs*, Random Structures and Algorithms **57** (2020), no. 4, 879–891 (English (US)).

References II

- Thomas M Cover, Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition, IEEE transactions on electronic computers (1965), no. 3, 326–334.
- Jian Ding and Nike Sun, *Capacity lower bound for the Ising perceptron*, Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, 2019, pp. 816–827.
- Elizabeth Gardner, *Maximum storage capacity in neural networks*, EPL (Europhysics Letters) **4** (1987), no. 4, 481.
- Mathematical and general **21** (1988), no. 1, 257.
- Elizabeth Gardner and Bernard Derrida, *Optimal storage properties of neural network models*, Journal of Physics A: Mathematical and general **21** (1988), no. 1, 271.

References III

- David Gamarnik, Eren C Kızıldağ, Will Perkins, and Changji Xu, *Algorithms and barriers in the symmetric binary perceptron model*, 2022 IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS), IEEE, 2022, pp. 576–587.
- Jeong Han Kim and James R Roche, *Covering cubes by random half cubes, with applications to binary neural networks*, Journal of Computer and System Sciences **56** (1998), no. 2, 223–252.
- Jiri Matousek, *Geometric discrepancy: An illustrated guide*, vol. 18, Springer Science & Business Media, 1999.
- Andrea Montanari, Yiqiao Zhong, and Kangjie Zhou, *Tractability from overparametrization: The example of the negative perceptron*, arXiv preprint arXiv:2110.15824 (2021).

References IV

- Will Perkins and Changji Xu, Frozen 1-RSB structure of the symmetric Ising perceptron, Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing, 2021, pp. 1579–1588.
- Joel Spencer, Six standard deviations suffice, Transactions of the American mathematical society **289** (1985), no. 2, 679–706.
- James G Wendel, *A problem in geometric probability*, Mathematica Scandinavica **11** (1962), no. 1, 109–111.