Sharp Thresholds for Overlap Gap Property: Ising *p*-Spin Glass and Random *k*-SAT

Eren C. Kızıldağ (UIUC Statistics)

RANDOM 2025

Ising p-Spin Glass

For $p, N \in \mathbb{N}$ and **disorder** $J = (J_{i_1,...,i_p} : 1 \le i_1,...,i_p \le N)$ with iid $\mathcal{N}(0,1)$ entries, consider Hamiltonian

$$H_{N,p}(\sigma):=N^{-\frac{p-1}{2}}\sum_{1\leq i_1,\ldots,i_p\leq N}J_{i_1,\ldots,i_p}\sigma_{i_1}\cdots\sigma_{i_p},$$

where $\sigma \in \{-1, 1\}^N$ (Ising spins).

- p = 2 by Sherrington-Kirkpatrick [75]. Large p by Derrida [80]
- MLE in tensor PCA, limits of MaxCUT/MaxSAT
 Ben Arous-Mei-Montanari-Nica [19], Dembo-Montanari-Sen [18], Panchenko [18]

Optimizing Ising p-Spin Glass

Scaling $N^{-\frac{\rho-1}{2}}$ ensures non-trivial limit

$$OPT := \lim_{N \to \infty} \max_{\sigma \in \{-1,1\}^N} H_{N,p}(\sigma)/N = \Theta(1)$$

Parisi [79], Guerra-Toninelli [02], Talagrand [06], Panchenko [14]

Algorithmic Problem

Given J, find in **poly-time** σ_{ALG} st $H_{N,p}(\sigma_{ALG})/N \ge (1 - \epsilon)OPT$.

- H_N non-convex and e^{Θ(N)} local minima/saddle below OPT
 Auffinger-Ben Arous-Cerny [13], Subag [17], Subag-Zeitouni [21]
- Worst-Case: Reaching $H(\sigma)/N \ge \text{OPT} \times \log^{-c} N$ is NP-hard Arora-Berger-Hazan-Kindler-Safra [05]

Statistical-Computational Gap in Spin Glasses

- For SK model (p = 2), AMP succeeds under no overlap-gap assumption (Montanari [19])
- For $p \ge 4$, model exhibits **overlap-gap** (Chen-Gamarnik-Panchenko-Rahman [19]). AMP **fails**:

Theorem (Gamarnik-Jagannath, 2021)

 $\forall p \geq 4$ even, $\exists \mu_p > 0$ st for AMP, $H_{N,p}(\sigma_{ALG})/N \leq OPT - \mu_p$.

Gap: ALG < OPT

No Overlap-Gap Assumption

No Overlap Gap Assumption

 μ_{β} : distribution of $n^{-1}|\langle \sigma_1, \sigma_2 \rangle|$. For $\beta > \beta_0$, $\exists q^*$ st $t \mapsto \mu_{\beta}([0, t])$ is strictly increasing on $[0, q^*]$ with $\mu_{\beta}([0, q^*]) = 1$

- Set of achievable overlaps for typical low-temperature states is an interval.
- Open, though widely believed for the SK model.

Random *k*-SAT

- Boolean variables x_1, \ldots, x_N . k-clause $C = y_1 \vee \cdots \vee y_k$, where y_1, \ldots, y_k chosen from $\{x_1, x'_1, \ldots, x_N, x'_N\}$.
- Formula: $\Phi = C_1 \wedge \cdots \wedge C_M$, for iid C_i
- **Regime:** $M = \Theta(N)$, constraint density $\alpha := M/N$.

When do satisfying σ exist? Can we find them efficiently?

Random *k*-SAT: $\alpha_{\text{SAT}} \sim 2^k \ln 2$

- Φ is whp unsatisfiable if $\alpha \ge 2^k \ln 2 \frac{1}{2} (\ln 2 + 1) + o_k(1)$ Franco-Paull [83], Kirousis-Kranakis-Krizanc-Stamatiou [98]
- Φ is whp satisfiable if $\alpha \leq 2^k \ln 2 \frac{1}{2} (\ln 2 + 1) o_k(1)$ Achlioptas-Moore [02], Achlioptas-Peres [03], Coja Oghlan-Panagiotou [16]
- For $k \geq k_0$, $\exists \alpha_{\mathrm{SAT}}(k)$ sth Φ is satisfiable if $\alpha < \alpha_{\mathrm{SAT}}(k)$ and unsatisfiable if $\alpha > \alpha_{\mathrm{SAT}}(k)$, both whp.

 Ding-Sly-Sun [15]

Statistical-Computational Gap in Random *k*-SAT

Algorithms work below $\alpha \leq \alpha_{ALG} \sim 2^k \ln k/k$ (Coja-Oghlan [10]).

- Low-degree poly fail above $\alpha \geq 4.91\alpha_{ALG}$ (Bresler-Huang [21])
- Prior hardness results for $\alpha = \Omega(2^k \ln^2 k/k) = \Omega(\alpha_{\rm ALG} \ln k)$ Gamarnik-Sudan [17], Coja Oglan-Haqshenas-Hetterich [17]

Overlap Gap Property

Both models exhibit **Overlap Gap Property** (OGP), intricate geometric feature of landscape. Implies hardness of stable algs

Gamarnik-Jagannath [19], Gamarnik-Jagannath-Wein [20], Huang-Sellke [22,23], Gamarnik-Jagannath-K. [23], Gamarnik-Sudan [17], Bresler-Huang [21]

Stable Algorithms

AMP/BP, low-degree poly, spectral algs, GD/Langevin dynamics

OGP: No tuples of near-optimal solutions at intermediate overlap.

OGP ⇒ **Algorithmic Hardness**

OGP - A Cartoon Illustration

Loss \mathcal{L} . No (σ_1, σ_2) with $\mathcal{L}(\sigma_i) \leq \mathcal{E}, d(\sigma_1, \sigma_2) \in (\nu_1, \nu_2)$.

Finer Link between OGP and Hardness?

 Algs succeed for SK model under no overlap gap assumption (Montanari [19])

- For binary perceptron, OGP guarantee (Gamarnik-K.-Perkins-Xu [22]) matches usual average-case hardness (Vafa-Vaikuntanathan [25])
- Certain optimization problems exhibiting OGP are amenable to linear programming (Li-Schramm [24])

OGP to Algorithmic Hardness

Rule-of-Thumb

Multi OGP (m-OGP): larger m gives better thresholds (first moment)

How does the power of OGP scale as *m* increases?

Our Results

- Sharp phase transition for multi OGP for large p and k
- Qualitative insights into power of OGP: power indeed amplifies with growing m

OGP in Spin Glasses

- p-spin model exhibits **branching OGP**, Lipschitz algs fail at $(1 + \epsilon)$ ALG. Sharpest bound for fixed p Huang-Sellke [22,23]
- **Lipschitz Alg:** O(1) iterations of AMP, Gradient Descent, Langevin Dynamics (on $e^{\beta H}$). Strict subclass of stable alg
- Valid only for **even** p, sophisticated pf (Parisi formula)

Ground-State Asymptotics

As $p \to \infty$, p-spin glass converge to REM where OPT = $\sqrt{2 \ln 2}$

Symmetric *m*-OGP

For $m \in \mathbb{N}$, $0 < \gamma < 1$ and $0 < \eta \ll \xi < 1$, let \mathcal{S}_{p-spin} be the set of all m-tuples $\sigma^{(1)}, \ldots, \sigma^{(m)} \in \{-1, 1\}^N$ such that:

- $\min_{1 \le t \le m} H_{N,p}(\sigma^{(t)}) \ge \gamma \sqrt{2 \ln 2}$
- For any $t < \ell$, $n^{-1} \langle \sigma^{(t)}, \sigma^{(\ell)} \rangle \in [\xi \eta, \xi]$.

Symmetric m-OGP

 $S_{p-spin} = \emptyset$ (whp) for suitable parameters.

No nearly equidistant, γ -optimal m-tuples

Symmetric *m*-OGP

Theorem (Gamarnik-Jagannath-K., 2023)

 $\forall m \in \mathbb{N}, \gamma > 1/\sqrt{m}$ and $p = \Omega(1)$, the model exhibits symmetric m-OGP and stable algorithms fail.

Asymptotically Sharp (Addario Berry-Maillard [20])

Finding $H_N(\sigma_{ALG})/N \ge \epsilon$ in REM requires $e^{\Theta(N)}$ queries

Theorem (K., 2025)

Symmetric m-OGP is absent below $1/\sqrt{m}$: $\forall m \in \mathbb{N}$, $\gamma < 1/\sqrt{m}$, $0 < \eta < \xi < 1$ and p large, $\mathcal{S}_{p-spin} \neq \varnothing$ (whp)

Sharp Phase Transition for *m***-OGP**

Corollary

 $\forall m \in \mathbb{N}$, symmetric m-OGP exhibits sharp PT at $1/\sqrt{m}$

Power of symmetric *m*-OGP in proving hardness amplifies indefinitely

Shattering

- Kirkpatrick-Thirumalai [87]: Ising *p*-spin glass exhibits shattering phase. Verified for $\sqrt{\ln 2} < \beta < \sqrt{2 \ln 2}$ Gamarnik-Jagannath-K. [23]
- Crucially based on 2-OGP, absent for $\gamma < 1/\sqrt{2}$. $\beta < \sqrt{\log 2}$?
- El Alaoui [24]: Soft OGP, optimal shattering for $\beta > \sqrt{2 \log p/p}$

OGP in Random *k*-SAT

For $k, m \in \mathbb{N}$, $0 < \gamma < 1$ and $0 < \eta \ll \xi < 1$, let $\mathcal{S}_{k-\text{SAT}}$ be the set of all m-tuples $\sigma^{(1)}, \ldots, \sigma^{(m)} \in \{0, 1\}^N$ such that:

- $\Phi(\sigma^{(t)}) = 1, \forall t$, where **density** is $\gamma 2^k \ln 2$
- For any $t < \ell$, $N^{-1}d_H(\sigma^{(t)}, \sigma^{(\ell)}) \in [\xi \eta, \xi]$.

Symmetric m-OGP

 $S_{k-SAT} = \emptyset$ (whp) for suitable parameters.

No nearly equidistant satisfying *m*-tuples at density $\sim \gamma \alpha_{\rm SAT}$

OGP in Random *k***-SAT**

Theorem (K., 2025)

- $\forall m, \gamma > 1/m$, and $k = \Omega(1)$, model exhibits symmetric m-OGP
- $\forall m, \gamma < 1/m$, and $k = \Omega(\ln n)$, symmetric m-OGP is absent

Corollary

 $\forall m$, symmetric m-OGP exhibits sharp PT at 1/m.

 $k = \Omega(\ln n)$: Mirrors earlier results from the random k-SAT literature Frieze-Wormald [05], Coja Oghlan-Frieze [80]

How about k = O(1)?

Constant k

Consider *m*-tuples satisfying fraction of clauses (MaxSAT)

Theorem (K., 2025)

 $\forall m, \gamma < 1/m$ and $k = \Omega(1)$, symmetric m-OGP is absent from the set of assignments satisfying $1 - \exp(-\Theta_k(k))$ fraction of C

Proof Idea: Second Moment Method

- Using **probabilistic method**, $\exists \sigma^{(1)}, \dots, \sigma^{(m)}$ st for all i < j, $N^{-1}\langle \sigma^{(i)}, \sigma^{(j)} \rangle \in [\xi \eta, \xi]$ (otherwise $\mathcal{S}_{p-\text{spin}} = \emptyset$ trivially).
- Second moment method: For any \mathbb{Z} -valued $M \geq 0$,

$$\mathbb{P}[M \ge 1] \ge \frac{\mathbb{E}[M]^2}{\mathbb{E}[M^2]}$$
 (Paley-Zygmund Inequality)

Applying it to $M := |S_{p-spin}|$ we obtain

$$\mathbb{P}\left[\mathcal{S}_{p-spin}
eq \varnothing
ight] \ge \exp\left(-No_p(1)\right)$$

where $o_p(1) \to 0$ as $p \to \infty$. 2nd Moment Method fails!

Proof Idea: Concentration + Repairing 2nd Mom

Proxy random variable

$$T_{m,\xi,\eta} := \max_{\substack{\boldsymbol{\sigma}^{(1)},\dots,\boldsymbol{\sigma}^{(m)} \in \{-1,1\}^N \\ N^{-1}\langle \boldsymbol{\sigma}^{(i)},\boldsymbol{\sigma}^{(i)}\rangle \in [\xi-\eta,\xi]}} \min_{1 \le j \le m} H_{N,p}(\boldsymbol{\sigma}^{(i)})$$

Lipschitz wrt **disorder**. As $J \in (\mathbb{R}^N)^{\otimes p}$ has iid $\mathcal{N}(0,1)$ entries,

$$\mathbb{P}\big[\big|T_{m,\xi,\eta} - \mathbb{E}[T_{m,\xi,\eta}]\big| \ge \epsilon\big] \le 2\exp(-n\epsilon^2)$$

Observe that:

$$S_{p-spin} \neq \emptyset \iff T_{m,\xi,\eta} \geq \gamma \sqrt{2 \ln 2}$$

Proof Idea: An Argument of Frieze

Fix $\gamma' \in (\gamma, 1/\sqrt{m})$. For all p, N large,

$$\begin{split} \mathbb{P}[T_{m,\xi,\eta} \geq \gamma' \sqrt{2 \ln 2}] \geq \exp(-No_p(1)) \\ \geq 2 \exp(-N\epsilon^2) \geq \mathbb{P}[T_{m,\xi,\eta} \geq \mathbb{E}[T_{m,\xi,\eta}] + \epsilon]. \end{split}$$

Consequently, $\mathbb{E}[T_{m,\xi,\eta}] \ge \gamma' \sqrt{2 \ln 2} - \epsilon$. Thus for $\epsilon > 0$ small

$$T_{m,\epsilon,n} \ge \gamma' \sqrt{2 \ln 2} - 2\epsilon \ge \gamma \sqrt{2 \ln 2}$$
 whp.

- Argument of Frieze [90], originally for indep sets in $\mathbb{G}(n, \frac{d}{n})$
- k-SAT: Auxil rv has bdd differences, McDiarmid's ineq

Thank you!