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Ising p-Spin Glass

For p, N € N and disorder J = (J;,
N(0,1) entries, consider Hamiltonian

_pot
Hyp(o) =N"2 > Ji 000,

1<it, ... ip<N

where o € {—1,1}N (Ising spins).

@ p = 2 by Sherrington-Kirkpatrick [75]. Large p by Derrida [80]

@ MLE in tensor PCA, limits of MaxCUT/MaxSAT

Ben Arous-Mei-Montanari-Nica [19], Dembo-Montanari-Sen [18], Panchenko [18]
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Optimizing Ising p-Spin Glass

. —1 . .
Scaling N~="z" ensures non-trivial limit

OPT := lim max Hyp(o)/N=0©(1)

N—oo oe{—1,1}N

Parisi [79], Guerra-Toninelli [02], Talagrand [06], Panchenko [14]

Algorithmic Problem
Given J, find in poly-time o AL st Hy p(oarc)/N > (1 — €)OPT.

@ Hy non-convex and e®™) Jocal minima/saddle below OPT
Auffinger-Ben Arous-Cerny [13], Subag [17], Subag-Zeitouni [21]

@ Worst-Case: Reaching H(o)/N > OPT x log™° N is NP-hard
Arora-Berger-Hazan-Kindler-Safra [05]
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Statistical-Computational Gap in Spin Glasses

@ For SK model (p = 2), AMP succeeds under ho
overlap-gap assumption (Montanari [19])

@ For p > 4, model exhibits overlap-gap (Chen-Gamarnik-
Panchenko-Rahman [19]). AMP fails:

Theorem (Gamarnik-Jagannath, 2021)
Vp > 4 even, 3pp > 0 st for AMP, Hy p(oaLc)/N < OPT — pip.

Gap: ALG < OPT
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No Overlap-Gap Assumption

No Overlap Gap Assumption

g : distribution of n='|(ay, a2)|. For 8 > Bo, 3q* st t — ps([0, 1]) is
strictly increasing on [0, g*] with x5([0, g*]) = 1

@ Set of achievable overlaps for typical low-temperature
states is an interval.

@ Open, though widely believed for the SK model.
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Random k-SAT

@ Boolean variables xi, ..., xy. k-clause C = y3 V- -+ V y,
where yy, ..., yx chosen from {xy, x{,..., Xy, X} }.

@ Formula: ® =Cy A--- ACyy, foriid C;

@ Regime: M = ©(N), constraint density o := M/N.

When do satisfying o exist? Can we find them efficiently? J
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Random k-SAT: QISAT ™~ 2KIn2

@ ¢ is whp unsatisfiable if a > 2KIn2 — J(In2 + 1) + ox(1)
Franco-Paull [83], Kirousis-Kranakis-Krizanc-Stamatiou [98]

@ & is whp satisfiable if & <2%In2 — J(In2+ 1) — 0(1)

Achlioptas-Moore [02], Achlioptas-Peres [03], Coja Oghlan-Panagiotou [16]

@ For k > ko, Jasar(k) sth @ is satisfiable if « < asar(k) and
unsatisfiable if o > asar(k), both whp.
Ding-Sly-Sun [15]
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Statistical-Computational Gap in Random k-SAT

Algorithms work below a < aarg ~ 2K1n K /K (Coja-Oghlan [10]).

Shattering at oy ~ aarg

T 1 T >
O('d,+ Ol Ol Ols
Krzakala-Montanari-Ricci Tersenghi-Zdeborova [07], Achlioptas-Coja-Oghlan [08]

@ Low-degree poly fail above o > 4.91a1 g (Bresler-Huang [21])

@ Prior hardness results for o = Q(2% In? k/k) = Q(aarg In k)

Gamarnik-Sudan [17], Coja Oglan-Hagshenas-Hetterich [17]
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Overlap Gap Property

Both models exhibit Overlap Gap Property (OGP), intricate
geometric feature of landscape. Implies hardness of stable algs
Gamarnik-Jagannath [19], Gamarnik-Jagannath-Wein [20], Huang-Sellke [22,23],
Gamarnik-Jagannath-K. [23], Gamarnik-Sudan [17], Bresler-Huang [21]

Stable Algorithms
AMP/BP, low-degree poly, spectral algs, GD/Langevin dynamics

OGP: No tuples of near-optimal solutions at intermediate overlap.

OGP = Algorithmic Hardness
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OGP - A Cartoon lllustration

Loss L. No (o1,02) with L(o}) < &,d(o1,02) € (v1,12).

L(0,€)

v < 12
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Finer Link between OGP and Hardness?

@ Algs succeed for SK model under no overlap gap assumption
(Montanari [19])

@ For binary perceptron, OGP guarantee (Gamarnik-K.-Perkins-Xu [22])
matches usual average-case hardness (Vafa-Vaikuntanathan [25])

@ Certain optimization problems exhibiting OGP are amenable to
linear programming (Li-Schramm [24])

OGP é Hardness
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OGP to Algorithmic Hardness

Rule-of-Thumb
Multi OGP (m-OGP): larger m gives better thresholds (first moment)

How does the power of OGP scale as m increases?

@ Sharp phase transition for multi OGP for large p and k

@ Qualitative insights into power of OGP: power indeed
amplifies with growing m
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OGP in Spin Glasses

@ p-spin model exhibits branching OGP, Lipschitz algs fail
at (1 + €)ALG. Sharpest bound for fixed p Huang-Sellke [22,23]

@ Lipschitz Alg: O(1) iterations of AMP, Gradient Descent,
Langevin Dynamics (on e?/). Strict subclass of stable alg

@ Valid only for even p, sophisticated pf (Parisi formula)

Ground-State Asymptotics
As p — oo, p-spin glass converge to REM where OPT = v/21In2
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Symmetric m-OGP

FormeN,0<y<land0<n <<, letS,_ i be the set
of all m-tuples ("), ..., o(™M ¢ {—1,1}N such that:

@ miny<i<m HN’p(O'(t)) >~vv2In2
@ Forany t < ¢, n ' (c® o) e [¢ —n,g].

Symmetric m-OGP

Sp—spin = @ (Whp) for suitable parameters.

No nearly equidistant, y-optimal m-tuples
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Symmetric m-OGP

Theorem (Gamarnik-Jagannath-K., 2023)

vme N,y > 1/y/m and p = Q(1), the model exhibits symmetric
m-OGP and stable algorithms fail.

Asymptotically Sharp (Addario Berry-Maillard [20])

Finding Hy(oarc)/N > € in REM requires e®(V) queries

Theorem (K., 2025)

Symmetric m-OGP is absent below 1/v/m:Vm e N, v < 1/y/m,
0<n<¢<1andplarge, Sy_spin # @ (Whp)

14/21



Sharp Phase Transition for m-OGP

vm € N, symmetric m-OGP exhibits sharp PT at1/\/m

Power of symmetric m-OGP in proving hardness amplifies indefinitely

@ Kirkpatrick-Thirumalai [87]: Ising p-spin glass exhibits shattering
phase. Verified for VIn2 < 8 < v/2In 2 Gamarnik-Jagannath-K. [23]

@ Crucially based on 2-OGP, absent for v < 1/v/2. < \/log2?

@ El Alaoui [24]: Soft OGP, optimal shattering for 8 > \/2logp/p
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OGP in Random k-SAT

Fork, meN,0<y<1and0 <n <& <1, let Sg_sar be the
set of all m-tuples (V). ... o(™ ¢ {0,1}"N such that:

e ¢(o)) =1,vt, where density is 72X In 2

@ Forany t < ¢, N 'dy(c®, &) c [¢ —n,¢].

Symmetric m-OGP
Sk_sat = @ (whp) for suitable parameters.

No nearly equidistant satisfying m-tuples at density ~ vasar

16/21



OGP in Random k-SAT

Theorem (K., 2025)
@ Vm,~ > 1/m, and k = Q(1), model exhibits symmetric m-OGP
@ Vm,~v < 1/m, and k = Q(In n), symmetric m-OGP is absent

vm, symmetric m-OGP exhibits sharp PT at1/m.

k = Q(In n): Mirrors earlier results from the random k-SAT literature
Frieze-Wormald [05], Coja Oghlan-Frieze [80]

How about k = O(1)?
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Constant k

Consider m-tuples satisfying fraction of clauses (MaxSAT)

Theorem (K., 2025)

Vm,~v < 1/m and k = Q(1), symmetric m-OGP is absent from
the set of assignments satisfying 1 — exp(—©x(k)) fraction of C
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Proof Idea: Second Moment Method

e Using probabilistic method, So("), ... o(™ stforall i < j,
N~ (o) a)) € [¢ —n,¢] (otherwise S,_gpin = @ trivially).
@ Second moment method: For any Z-valued M > 0,

E[M]?
E[M2]

PM>1] > (Paley-Zygmund Inequality)
Applying it to M := |Sp_spin| We obtain

P [Sp_spin # @] > exp(—Nop(1))

where 0,(1) — 0 as p — co. 2nd Moment Method fails!
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Proof Idea: Concentration + Repairing 2nd Mom

Proxy random variable

e{ 1,1V 1<j<m
YE[E—n.€]

.....

m';} min Hy p(o o)
o)

Lipschitz wrt disorder. As J € (RV)®P has iid A/(0, 1) entries,
P[|Tmen — ElTmenl| > €] < 2exp(—ne?)
Observe that:

Sp—spin # D = Tmey >7V2In2
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Proof Idea: An Argument of Frieze

Fix v/ € (v,1/+/m). For all p, N large,

P[Timen > 7'V2In2] > exp(—Nop(1))
>2 exp(—Ngz) > P[Tmen > E[Tmen] + el

Consequently, E[Tp¢.,] > 7/v2In2 — e. Thus for ¢ > 0 small
Tmen =7 V2In2 —2¢ >~yv2In2  whp.

@ Argument of Frieze [90], originally for indep sets in G(n, %)
@ Kk-SAT: Auxil rv has bdd differences, McDiarmid’s ineq
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Thank you!
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