Stationary Points of Shallow Neural Networks with Quadratic Activation Function

Eren C. Kızıldağ (MIT), joint work with David Gamarnik and Ilias Zadik (MIT)

Simons Institute, Joint CCSI/GMOS student seminar

November 19, 2021

D. Gamarnik, E. C. Kızıldağ, I. Zadik (MIT)

Stationary Points of Quadratic Networks

November 19, 2021 1 / 20

2) Main Results: Optimization Landscape

3 Main Results: Initialization

4 Main Results: Generalization

D. Gamarnik, E. C. Kızıldağ, I. Zadik (MIT)

Stationary Points of Quadratic Networks

November 19, 2021 2 / 20

э

イロト イヨト イヨト

Motivation

• NN models achieved great practical success:

Image recognition, image classification, speech recognition, natural language processing, game playing,...

- Rigorous understanding? Still an ongoing quest.
- Example:
 - Training is (worst-case) NP-hard (Blum and Rivest [89]).
 - Loss function: In general, highly non-convex.
 - Gradient descent: Simple, first order method. Yet, great empirical success.

This Work

Our Motivation

- Provide further insights for these networks.
- Our focus:
 - Training. Through the landscape lens. Convergence of GD due to benign landscape.
 - Initialization. In the context of random planted weights.
 - Generalization.

A (10) N (10)

Setup and Main Assumptions

- One hidden layer, width $m \in \mathbb{N}$. Quadratic activation, $\sigma(x) = x^2$.
- **Realizable Model.** Planted weights $W^* \in \mathbb{R}^{m \times d}$. j^{th} row of W^* , $W_i^* \in \mathbb{R}^d$.
- For $X \in \mathbb{R}^d$, computes the *label*

$$f(W^*;X) = \sum_{1 \leq j \leq m} \langle W_j^*, X \rangle^2 = \|W^*X\|_2^2.$$

Main Assumptions

- $\operatorname{rank}(W^*) = d$. Hence, $m \ge d$.
- Data $X \in \mathbb{R}^d$ has i.i.d. centered **sub-Gaussian** coordinates (can sometimes be relaxed).

イロト 不得下 イヨト イヨト

Setup and Main Assumptions

- Generate i.i.d. $X_i \in \mathbb{R}^d$, $1 \le i \le N$. Label $Y_i = f(W^*; X_i)$.
- Learner: Given training data (X_i, Y_i) , $1 \le i \le N$, find a NN with small training error/empirical risk:

$$\widehat{\mathcal{L}}(W) \triangleq rac{1}{N} \sum_{1 \leq i \leq N} \left(Y_i - \sum_{1 \leq j \leq m} \langle W_j, X \rangle^2
ight)^2$$

Run any training algorithm (e.g. GD, SGD, etc.) to solve $\min_{W \in \mathbb{R}^{m \times d}} \widehat{\mathcal{L}}(W)$.

• Generalization ability. Use "learned" *W* to predict unseen data. Quantified by generalization error/population risk:

$$\mathcal{L}(W) \triangleq \mathbb{E}\left[\left(f(W;X) - f(W^*;X)\right)^2\right]$$

ヘロト 人間 ト イヨト イヨト

Prior Work: Planted Weights, Sub-Gaussianity, and Quadratic Networks

 \bullet Shallow NN with **planted** weights and **Gaussian** data is popular in literature:

Du et al. [17], Li & Yuan [17], Tian [17], Zhong et al. [17], Soltanolkotabi [17], Brutzkus & Globerson [17], ...

- Quadratic networks, also popular:
 - Du and Lee [18]; Soltanolkotabi, Javanmard, and Lee [18]; Mannelli, Vanden-Eijnden, and Zdeborová [20]; and Abbe, Boix-Adsera, Brennan, Bresler, and Nagaraj [21].
- Quadratic activation: Admittedly stylized. However,
 - Stack blocks of quadratic networks to approximate deep sigmoid networks (Livni, Shalev-Shwartz, and Shamir [14]).
 - Second order approximation to general nonlinearities (Venturi, Bandeira, and Bruna [18]).
- Quadratic networks: Provide further insights on complex architectures.

- 3

・ロット 予定 マイロット

1) Intro and Motivation

2 Main Results: Optimization Landscape

3) Main Results: Initialization

4 Main Results: Generalization

D. Gamarnik, E. C. Kızıldağ, I. Zadik (MIT)

Stationary Points of Quadratic Networks

November 19, 2021 8 / 20

э

A I > A I = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Optimization Landscape: An Energy Barrier

Theorem (Gamarnik, K.; and Zadik, 2020)

 $X_i \in \mathbb{R}^d$, $1 \le i \le N$, *i.i.d.* data with centered *i.i.d.* sub-Gaussian coordinates. $Y_i = f(W^*; X_i)$. Then with high probability,

$$\min_{\substack{W \in \mathbb{R}^{m \times d} \\ \operatorname{rank}(W) \leq d-1}} \widehat{\mathcal{L}}(W) = \min_{\substack{W \in \mathbb{R}^{m \times d} \\ \operatorname{rank}(W) \leq d-1}} \frac{1}{N} \sum_{1 \leq i \leq N} (Y_i - f(W; X_i))^2 \geq \frac{1}{2} C \sigma_{\min}(W^*)^4.$$

- C > 0: absolute constant, depends only on (conditional) moments of data.
- Energy barrier for $\widehat{\mathcal{L}}(\cdot)$: for rank(W) < d, $\widehat{\mathcal{L}}(W)$ is bounded away from zero by an explicit quantity. Analogue result for population risk, $\mathcal{L}(W)$.
- Tight up to a multiplicative constant.
- Sub-Gaussianity not essential: $\mathbb{P}(|X_i(j)| > t) \le \exp(-\Omega(t^{\alpha}))$ type tail behavior is ok.

ヘロマ 不可 マイロマ トロー

Optimization Landscape: Global Optimality of Full-Rank Stationary Points

Theorem (Gamarnik, **K.**; and Zadik, 2020)

Let $\operatorname{rank}(W) = d$ and $\nabla_W \widehat{\mathcal{L}}(W) = 0$. Then, $\widehat{\mathcal{L}}(W) = 0$. Furthermore, if $N \ge d(d+1)/2$, then $W = QW^*$ for some orthogonal $Q \in \mathbb{R}^{m \times m}$.

- Analogue result holds for population risk.
- No full-rank saddle points for $\widehat{\mathcal{L}}(\cdot)$ and $\mathcal{L}(\cdot)$.
- Benign landscape below the energy barrier: recall that whp no rank-deficient $W \in \mathbb{R}^{m \times d}$ below the barrier.

```
Next. Benign landscape \implies Convergence of GD.
```

イロト 不得 とくほ とくほ とうほう

Optimization Landscape: Convergence of Gradient Descent

Theorem (Gamarnik, K.; and Zadik, 2020)

Suppose $\widehat{\mathcal{L}}(W_0) < \frac{1}{2}C_5\sigma_{\min}(W^*)^4$. Then, there is a high probability event on which:

- Running GD (with appropriate step size) generates a full-rank, ε−approximate stationary point W ∈ ℝ^{m×d} (||∇Â(W)||_F ≤ ε) in time poly(ε⁻¹, d).
- For this W, $\widehat{\mathcal{L}}(W) \leq C\epsilon\sigma_{\min}(W^*)^{-2}\mathrm{poly}(d)$, $\mathcal{L}(W) \leq C'\epsilon\sigma_{\min}(W^*)^{-1}\mathrm{poly}(d)$; and $\|W^TW (W^*)^TW^*\|_F \leq C''\epsilon^{\frac{1}{2}}\sigma_{\min}(W^*)^{-1}\mathrm{poly}(d)$. C, C', C'' > 0 constants.
- GD finds in polynomial time an approx. stationary W, if initializated "properly".
- $W^T W$ uniformly close to planted $(W^*)^T W^*$: good generalization.
- Technicality. Control the condition number of a certain matrix with i.i.d. rows consisting of tensorized X_i^{⊗2}. Analyze spectrum of expected covariance matrix of tensorized data.

人口区 医静脉 医原体 医原体 医尿

Remarks

,

- Energy barrier, separating rank-deficient points: only full rank W below the barrier.
- Full-rank stationary points are globally optimal: benign landscape below the barrier, no spurious full-rank stationary points.
- GD, when **initialized properly**, "approximately" minimizes $\widehat{\mathcal{L}}(W)$, and recovers W^* in polynomial time. Learned W has good generalization.
- Technicalities.
 - Covering and concentration arguments.
 - Novel concentration result for matrices having i.i.d. rows with tensorized data $X_i^{\otimes 2}$.
 - Uses tools from our recent work, Emschwiller, Gamarnik, K., and Zadik [20].

Next: "How to initialize properly?"

- 34

1) Intro and Motivation

2) Main Results: Optimization Landscape

Main Results: Initialization

4 Main Results: Generalization

D. Gamarnik, E. C. Kızıldağ, I. Zadik (MIT)

Stationary Points of Quadratic Networks

November 19, 2021 13 / 20

э

イロト イヨト イヨト イヨ

Proper Initialization

- **Recall:** GD is successful provided initialized *properly*.
- Focus. Initialization in the context of random $W^* \in \mathbb{R}^{m \times d}$:
 - NN with random weights: initial loss landscape.
 - Closely related to random feature methods, Rahimi & Recht [09].
 - Approximate dynamical systems (Gonon et al. [20]). Also studied for extreme learning machine (Huang et al. [06]), and in random matrix theory (Pennington & Worah [17]).

• Intuition.

- $\widehat{\mathcal{L}}(W)/\mathcal{L}(W)$ determined by **spectrum** of $W^T W (W^*)^T W^*$ and **data moments**.
- Tight concentration for Wishart spectrum, $(W^*)^T W^*$. Semicircle law: Bai & Yin [88,93].

 \implies Spectrum of $W^T W - (W^*)^T W^*$ can be controlled by tuning W.

 $\implies \widehat{\mathcal{L}}(W)/\mathcal{L}(W)$ can be controlled by tuning W.

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ うらぐ

Proper Initialization. Main Result.

Theorem (Gamarnik, K.; and Zadik, 2020)

 $W^* \in \mathbb{R}^{m \times d}$ has centered i.i.d. entries with unit variance, finite fourth moment. Data $X_i \in \mathbb{R}^d$, $1 \le i \le N$ has i.i.d. centered sub-Gaussian coordinates. Initialize W_0 so that $W_0^T W_0 = m I_{d \times d}$. Then, whp

$$\widehat{\mathcal{L}}(W_0) < rac{1}{2} C \sigma_{\min}(W^*)^4,$$

provided $m > C'd^2$ for a sufficiently large constant C' > 0.

- Deterministic initialization. Below the energy barrier, provided the NN is sufficiently overparameterized, $m = \Omega(d^2)$. Based on the semicircle law.
- Analogous result for the population risk.
- For W^* with i.i.d. standard normal entries, **non-asymptotic** guarantees available.

1 Intro and Motivation

2) Main Results: Optimization Landscape

3 Main Results: Initialization

Main Results: Generalization

D. Gamarnik, E. C. Kızıldağ, I. Zadik (MIT)

Stationary Points of Quadratic Networks

November 19, 2021 16 / 20

э

イロト イヨト イヨト イヨ

Sample Complexity

Main question.

"What is the smallest number of samples required to claim that small empirical risk also controls the generalization error?"

Theorem (Gamarnik, K.; and Zadik, 2020)

 $X_i \in \mathbb{R}^d$, $1 \le i \le N$ be data (not necessarily random). $S \triangleq \{A \in \mathbb{R}^{d \times d} : A^T = A\}$.

- Suppose span $(X_iX_i^T : 1 \le i \le N) = S$, and $\widehat{m} \in \mathbb{N}$ arbitrary. Then, for any $W \in \mathbb{R}^{\widehat{m} \times d}$ "interpolating" the data $(f(W; X_i) = f(W^*; X_i), 1 \le i \le N), W^T W = (W^*)^T W^*$. Thus, W generalizes well: $\mathcal{L}(W) = 0$.
- Suppose span(X_iX_i^T : 1 ≤ i ≤ N) ⊊ S. Then for any m̂ ∈ N, there exists a W ∈ R^{m̂×d} such that while W interpolates the data (f(W; X_i) = f(W*; X_i) for every i), W^TW ≠ (W*)^TW*. In particular, L(W) > 0 (where L is defined w.r.t. any jointly continuous distribution on R^d).

Sample Complexity: Remarks.

- If span(X_iX_i^T : 1 ≤ i ≤ N) = S, then any minimizer W of L(·) has necessarily zero generalization error.
- Not retrospective: span $(X_i X_i^T : 1 \le i \le N) = S$ can be checked beforehand.
- No randomness. Purely geometrical, necessary and sufficient condition.
- If W has **non-zero but small** $\widehat{\mathcal{L}}(W)$, earlier results allow bounding $\|W^T W (W^*)^T W^*\|_F$, and $\mathcal{L}(W)$.
- Parameter $\widehat{m} \in \mathbb{N}$: Interpolating NN need **not** have the same width m.
- Provided the span condition holds, **any** interpolant (potentially overparameterized) **generalize well**.

Theorem

As soon as
$$N \geq d(d+1)/2$$
, $\mathbb{P}ig[ext{span}(X_iX_i^{\mathcal{T}}: 1 \leq i \leq N) = \mathcal{S}ig] = 1.$

D. Gamarnik, E. C. Kızıldağ, I. Zadik (MIT)

э

ヘロト 人間 ト イヨト イヨト

Sample Complexity Bound for Planted Network.

Theorem (Gamarnik, K.; and Zadik, 2020)

 $X_i \in \mathbb{R}^d$, $1 \le i \le N$, *i.i.d.* with a jointly continuous distribution. Let $W^* \in \mathbb{R}^{m \times d}$ with $\operatorname{rank}(W^*) = d$ and $Y_i = f(W^*; X_i) = \sum_{1 \le j \le m} \langle W_j^*, X_i \rangle^2$.

- Suppose $N \ge d(d+1)/2$, and $\widehat{m} \in \mathbb{N}$. Then, with probability one over X_i , $1 \le i \le N$ the following holds: if $f(W; X_i) = f(W^*; X_i)$, $1 \le i \le N$, then $f(W; x) = f(W^*; x)$ for every $x \in \mathbb{R}^d$.
- Suppose X_i has centered i.i.d. coordinates with variance μ_2 and (finite) fourth moment μ_4 , and N < d(d+1)/2. Then, there exists a $W \in \mathbb{R}^{m \times d}$ such that while $\widehat{\mathcal{L}}(W) = 0$ (namely $f(W; X_i) = f(W^*; X_i)$ for $1 \le i \le N$),

$$\mathcal{L}(W) \geq \min\{\mu_4 - \mu_2^2, 2\mu_2^2\}\sigma_{\min}(W^*)^4.$$

Lower bound in second part: coincides with energy barrier.

D. Gamarnik, E. C. Kızıldağ, I. Zadik (MIT)

人口区 医静脉 医原体 医原体 医尿

Thank you!

D. Gamarnik, E. C. Kızıldağ, I. Zadik (MIT)

Stationary Points of Quadratic Networks

November 19, 2021 20 / 20

3

イロト イヨト イヨト イヨ