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Intro and Motivation

Motivation

NN models achieved great practical success:

Image recognition, image classification, speech recognition, natural language processing,
game playing,. . .

Rigorous understanding? Still an ongoing quest.

Example:
Training is (worst-case) NP-hard (Blum and Rivest [89]).
Loss function: In general, highly non-convex.
Gradient descent: Simple, first order method. Yet, great empirical success.
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Intro and Motivation

This Work

Our Motivation

Provide further insights for these networks.

Our focus:

Training. Through the landscape lens. Convergence of GD due to benign landscape.
Initialization. In the context of random planted weights.
Generalization.
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Intro and Motivation

Setup and Main Assumptions

One hidden layer, width m ∈ N. Quadratic activation, σ(x) = x2.

Realizable Model. Planted weights W ∗ ∈ Rm×d . j th row of W ∗, W ∗
j ∈ Rd .

For X ∈ Rd , computes the label

f (W ∗;X ) =
∑

1≤j≤m
〈W ∗

j ,X 〉2 = ‖W ∗X‖22.

Main Assumptions

rank(W ∗) = d . Hence, m ≥ d .

Data X ∈ Rd has i.i.d. centered sub-Gaussian coordinates (can sometimes be relaxed).
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Intro and Motivation

Setup and Main Assumptions

Generate i.i.d.Xi ∈ Rd , 1 ≤ i ≤ N. Label Yi = f (W ∗;Xi ).

Learner: Given training data (Xi ,Yi ), 1 ≤ i ≤ N, find a NN with small training
error/empirical risk:

L̂(W ) ,
1

N

∑
1≤i≤N

Yi −
∑

1≤j≤m
〈Wj ,X 〉2

2

Run any training algorithm (e.g. GD, SGD, etc.) to solve minW∈Rm×d L̂(W ).

Generalization ability. Use “learned” W to predict unseen data.
Quantified by generalization error/population risk:

L(W ) , E
[(
f (W ;X )− f (W ∗;X )

)2]
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Intro and Motivation

Prior Work: Planted Weights, Sub-Gaussianity, and Quadratic Networks

Shallow NN with planted weights and Gaussian data is popular in literature:

Du et al. [17], Li & Yuan [17], Tian [17], Zhong et al. [17], Soltanolkotabi [17], Brutzkus
& Globerson [17], ...

Quadratic networks, also popular:

Du and Lee [18]; Soltanolkotabi, Javanmard, and Lee [18]; Mannelli, Vanden-Eijnden, and
Zdeborová [20]; and Abbe, Boix-Adsera, Brennan, Bresler, and Nagaraj [21].

Quadratic activation: Admittedly stylized. However,

Stack blocks of quadratic networks to approximate deep sigmoid networks (Livni,
Shalev-Shwartz, and Shamir [14]).
Second order approximation to general nonlinearities (Venturi, Bandeira, and Bruna [18]).

Quadratic networks: Provide further insights on complex architectures.
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D. Gamarnik, E. C. Kızıldağ, I. Zadik (MIT) Stationary Points of Quadratic Networks November 19, 2021 8 / 20



Main Results: Optimization Landscape

Optimization Landscape: An Energy Barrier

Theorem (Gamarnik, K.; and Zadik, 2020)

Xi ∈ Rd , 1 ≤ i ≤ N, i.i.d. data with centered i.i.d. sub-Gaussian coordinates. Yi = f (W ∗;Xi ).
Then with high probability,

min
W∈Rm×d

rank(W )≤d−1

L̂(W ) = min
W∈Rm×d

rank(W )≤d−1

1

N

∑
1≤i≤N

(Yi − f (W ;Xi ))2 ≥ 1

2
Cσmin(W ∗)4.

C > 0: absolute constant, depends only on (conditional) moments of data.

Energy barrier for L̂(·): for rank(W ) < d , L̂(W ) is bounded away from zero by an
explicit quantity. Analogue result for population risk, L(W ).

Tight up to a multiplicative constant.

Sub-Gaussianity not essential: P(|Xi (j)| > t) ≤ exp(−Ω(tα)) type tail behavior is ok.
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Main Results: Optimization Landscape

Optimization Landscape: Global Optimality of Full-Rank Stationary Points

Theorem (Gamarnik, K.; and Zadik, 2020)

Let rank(W ) = d and ∇W L̂(W ) = 0. Then, L̂(W ) = 0.
Furthermore, if N ≥ d(d + 1)/2, then W = QW ∗ for some orthogonal Q ∈ Rm×m.

Analogue result holds for population risk.

No full-rank saddle points for L̂(·) and L(·).

Benign landscape below the energy barrier:
recall that whp no rank-deficient W ∈ Rm×d below the barrier.

Next. Benign landscape =⇒ Convergence of GD.
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Main Results: Optimization Landscape

Optimization Landscape: Convergence of Gradient Descent

Theorem (Gamarnik, K.; and Zadik, 2020)

Suppose L̂(W0) < 1
2C5σmin(W ∗)4. Then, there is a high probability event on which:

Running GD (with appropriate step size) generates a full-rank, ε−approximate stationary
point W ∈ Rm×d (‖∇L̂(W )‖F ≤ ε) in time poly(ε−1, d).

For this W , L̂(W ) ≤ Cεσmin(W ∗)−2poly(d), L(W ) ≤ C ′εσmin(W ∗)−1poly(d); and

‖W TW − (W ∗)TW ∗‖F ≤ C ′′ε
1
2σmin(W ∗)−1poly(d). C ,C ′,C ′′ > 0 constants.

GD finds in polynomial time an approx. stationary W , if initializated “properly”.

W TW uniformly close to planted (W ∗)TW ∗: good generalization.

Technicality. Control the condition number of a certain matrix with i.i.d. rows
consisting of tensorized X⊗2i . Analyze spectrum of expected covariance matrix of
tensorized data.
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Main Results: Optimization Landscape

Remarks

Energy barrier, separating rank-deficient points: only full rank W below the barrier.

Full-rank stationary points are globally optimal:
benign landscape below the barrier, no spurious full-rank stationary points.

GD, when initialized properly, “approximately” minimizes L̂(W ), and recovers W ∗ in
polynomial time. Learned W has good generalization.

Technicalities.
Covering and concentration arguments.
Novel concentration result for matrices having i.i.d. rows with tensorized data X⊗2

i .
Uses tools from our recent work, Emschwiller, Gamarnik, K., and Zadik [20].

,

Next: “How to initialize properly?”
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Main Results: Initialization
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Main Results: Initialization

Proper Initialization

Recall: GD is successful provided initialized properly.

Focus. Initialization in the context of random W ∗ ∈ Rm×d :

NN with random weights: initial loss landscape.
Closely related to random feature methods, Rahimi & Recht [09].
Approximate dynamical systems (Gonon et al. [20]). Also studied for extreme learning
machine (Huang et al. [06]), and in random matrix theory (Pennington & Worah [17]).

Intuition.
L̂(W )/L(W ) determined by spectrum of W TW − (W ∗)TW ∗ and data moments.
Tight concentration for Wishart spectrum, (W ∗)TW ∗. Semicircle law: Bai & Yin [88,93].

=⇒ Spectrum of W TW − (W ∗)TW ∗ can be controlled by tuning W .

=⇒ L̂(W )/L(W ) can be controlled by tuning W .
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Main Results: Initialization

Proper Initialization. Main Result.

Theorem (Gamarnik, K.; and Zadik, 2020)

W ∗ ∈ Rm×d has centered i.i.d. entries with unit variance, finite fourth moment.
Data Xi ∈ Rd , 1 ≤ i ≤ N has i.i.d. centered sub-Gaussian coordinates.
Initialize W0 so that W T

0 W0 = mId×d . Then, whp

L̂(W0) <
1

2
Cσmin(W ∗)4,

provided m > C ′d2 for a sufficiently large constant C ′ > 0.

Deterministic initialization. Below the energy barrier, provided the NN is sufficiently
overparameterized, m = Ω(d2). Based on the semicircle law.

Analogous result for the population risk.

For W ∗ with i.i.d. standard normal entries, non-asymptotic guarantees available.
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Main Results: Generalization
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Main Results: Generalization

Sample Complexity

Main question.

“What is the smallest number of samples required to claim that small empirical risk also
controls the generalization error?”

Theorem (Gamarnik, K.; and Zadik, 2020)

Xi ∈ Rd , 1 ≤ i ≤ N be data (not necessarily random). S , {A ∈ Rd×d : AT = A}.
Suppose span(XiX

T
i : 1 ≤ i ≤ N) = S, and m̂ ∈ N arbitrary. Then, for any W ∈ Rm̂×d

“interpolating” the data (f (W ;Xi ) = f (W ∗;Xi ), 1 ≤ i ≤ N), W TW = (W ∗)TW ∗.
Thus, W generalizes well: L(W ) = 0.

Suppose span(XiX
T
i : 1 ≤ i ≤ N) ( S. Then for any m̂ ∈ N, there exists a W ∈ Rm̂×d

such that while W interpolates the data (f (W ;Xi ) = f (W ∗;Xi ) for every i),
W TW 6= (W ∗)TW ∗. In particular, L(W ) > 0 (where L is defined w.r.t. any jointly
continuous distribution on Rd).
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Main Results: Generalization

Sample Complexity: Remarks.

If span(XiX
T
i : 1 ≤ i ≤ N) = S, then any minimizer W of L̂(·) has necessarily zero

generalization error.

Not retrospective: span(XiX
T
i : 1 ≤ i ≤ N) = S can be checked beforehand.

No randomness. Purely geometrical, necessary and sufficient condition.

If W has non-zero but small L̂(W ), earlier results allow bounding
‖W TW − (W ∗)TW ∗‖F , and L(W ).

Parameter m̂ ∈ N: Interpolating NN need not have the same width m.

Provided the span condition holds, any interpolant (potentially overparameterized)
generalize well.

Theorem

As soon as N ≥ d(d + 1)/2, P
[
span(XiX

T
i : 1 ≤ i ≤ N) = S

]
= 1.
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Main Results: Generalization

Sample Complexity Bound for Planted Network.

Theorem (Gamarnik, K.; and Zadik, 2020)

Xi ∈ Rd , 1 ≤ i ≤ N, i.i.d. with a jointly continuous distribution. Let W ∗ ∈ Rm×d with
rank(W ∗) = d and Yi = f (W ∗;Xi ) =

∑
1≤j≤m〈W ∗

j ,Xi 〉2.

Suppose N ≥ d(d + 1)/2, and m̂ ∈ N. Then, with probability one over Xi , 1 ≤ i ≤ N the
following holds: if f (W ;Xi ) = f (W ∗;Xi ), 1 ≤ i ≤ N, then f (W ; x) = f (W ∗; x) for every
x ∈ Rd .

Suppose Xi has centered i.i.d. coordinates with variance µ2 and (finite) fourth moment
µ4, and N < d(d + 1)/2. Then, there exists a W ∈ Rm×d such that while L̂(W ) = 0
(namely f (W ;Xi ) = f (W ∗;Xi ) for 1 ≤ i ≤ N),

L(W ) ≥ min
{
µ4 − µ22, 2µ22

}
σmin(W ∗)4.

Lower bound in second part: coincides with energy barrier.
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Main Results: Generalization

Thank you!
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