Symmetric Binary Perceptron Model: Algorithms and Barriers

Eren C. Kızıldağ (MIT)

Joint work with David Gamarnik (MIT), Will Perkins (UIC), and Changji Xu (Harvard) arXiv:2203.15667

March 30, 2022

Overview

Introduction

- Model and Motivation
- Prior Work
- Statistical-to-Computational Gaps, Clustering, and Freezing in SBP
- The Overlap Gap Property (OGP)
- Contributions: Properties of the Landscape of SBP
 - High κ Regime: 2–OGP and Ensemble–3–OGP for $\kappa = 1$.
 - Low κ Regime: Ensemble-*m*-OGP as $\kappa \rightarrow 0$.
- 3 Contributions: Results Regarding Algorithms
 - Stable Algorithms: Definition and Examples.
 - Kim-Roche Algorithm is Stable.
 - OGP Implies Failure of Stable Algorithms
- 4 Conclusion and Future Research
 - Summary of Contributions
 - Future Work

Symmetric Binary Perceptron (SBP): Model.

- Fix $\kappa, \alpha > 0$, and set $M = \lfloor n\alpha \rfloor$. Let $X_i \stackrel{d}{=} \mathcal{N}(0, I_n), 1 \leq i \leq M$ be i.i.d.
- Consider (random) set

$$S_{\alpha}(\kappa) \triangleq \bigcap_{1 \leq i \leq M} \{ \sigma \in \mathcal{B}_n : |\langle \sigma, X_i \rangle| \leq \kappa \sqrt{n} \},$$

where

$$\mathcal{B}_n = \{-1,1\}^n$$
 and $\langle \sigma, X_i \rangle = \sum_{1 \leq j \leq n} \sigma_j X_i(j).$

• Equivalently, for disorder $\mathcal{M} \in \mathbb{R}^{M \times n}$ with rows $X_1, X_2, \dots, X_M \in \mathbb{R}^n$,

$$S_{\alpha}(\kappa) = \{\sigma \in \mathcal{B}_n : \|\mathcal{M}\sigma\|_{\infty} \leq \kappa \sqrt{n}\}.$$

Toy one-layer neural network [Wen62, Cov65].

- Patterns $X_i \in \mathbb{R}^n, 1 \leq i \leq M$ to be stored.
- **Storage:** Find a $\sigma \in \mathcal{B}_n$ consistent with all X_i : $\langle \sigma, X_i \rangle \ge 0, 1 \le i \le M$.
- Storage Capacity: Maximum number of stored patterns M*.
 - M^*/n , as $n \to \infty$.
 - Detailed picture by statistical physicists [Gar87, Gar88, GD88].

Connection to Constraint Satisfaction Problems (CSPs):

- Each constraint $X_i \in \mathbb{R}^n$ rules out certain $\sigma \in \mathcal{B}_n$.
- $\alpha \triangleq M/n$ is constraint density.

Symmetric model, SBP [APZ19]: $\sigma \in S_{\alpha}(\kappa) \iff -\sigma \in S_{\alpha}(\kappa)$.

- Similar structural properties as asymmetric version [BDVLZ20].
- Easier math: analogy with k SAT vs. NAE k SAT.

SBP: Also related to combinatorial discrepancy theory [CV14, BS20].

▲ 御 ▶ ▲ 国 ▶ ▲ 国 ▶ ― 国

Our Work: Two Mysteries in SBP and OGP

Statistical-to-computational gaps:

Gap between existential guarantees and (polynomial-time) algorithmic guarantees.

- SBP has a statistical-to-computational gap.
- Origins of this gap? Landscape of SBP via statistical physics lens.

Extreme Clustering:

Typical solutions of SBP are $\Theta(n)$ apart isolated singletons.

- Suggests algorithmic hardness.
- A Conundrum. Coincides with polynomial-time algorithms.

This work: Overlap Gap Property (OGP). Intricate geometrical property.

Leverage OGP to rule out important classes of algorithms.

 $OGP \implies$ Hardness. Clustering \implies Hardness.

Recall

$$S_{\alpha}(\kappa) = \bigcap_{1 \leq i \leq M} \Big\{ \sigma \in \mathcal{B}_n : \big| \langle \sigma, X_i \rangle \big| \leq \kappa \sqrt{n} \Big\} = \Big\{ \sigma \in \mathcal{B}_n : \big\| \mathcal{M} \sigma \big\|_{\infty} \leq \kappa \sqrt{n} \Big\}.$$

Proportional Regime: $M, n \to \infty$ while $M/n \to \alpha$. Fix $\kappa > 0$ and vary α .

- Structural Question. $S_{\alpha}(\kappa)$ empty/non-empty (w.h.p.) & its geometry.
- Algorithmic Question: Efficient (polynomial-time) algorithms for finding $\sigma \in S_{\alpha}(\kappa)$.

SBP: Available Structural Results

Sharp Phase Transition. Set $p_{\alpha}(\kappa) \triangleq \mathbb{P}\left[S_{\alpha}(\kappa) \neq \varnothing\right]$.

 $\lim_{n\to\infty}p_{\alpha}(\kappa) = \begin{cases} 1, & \text{if } \alpha < \alpha_{c}(\kappa) \\ 0, & \text{if } \alpha > \alpha_{c}(\kappa) \end{cases}, \quad \text{where} \quad \alpha_{c}(\kappa) = -\frac{1}{\log_{2}\mathbb{P}[|\mathcal{N}(0,1)| \le \kappa]}. \end{cases}$

 $\alpha_{c}(\kappa)$ matches first moment prediction: $\mathbb{E}[|S_{\alpha}(\kappa)|] = o(1)$ iff $\alpha > \alpha_{c}(\kappa)$. For $\alpha < \alpha_{c}(\kappa)$:

- [APZ19]: $\liminf_{n} p_{\alpha}(\kappa) > 0$ by 2nd Moment Method.
- [PX21, ALS21b]: $\lim_{n} p_{\alpha}(\kappa) = 1 o(1)$. More delicate tools.

▶ ★ 国 ▶ ★ 国 ▶ 1 国

Asymmetric Model: Available Structural Results

Fix $\alpha > 0$, let $M = \lfloor n\alpha \rfloor$ and $X_i \stackrel{d}{=} \mathcal{N}(0, I_n), 1 \le i \le M$ i.i.d. Set

$$S'_{\alpha}(\kappa) = igcap_{1 \leq i \leq M} \Big\{ \sigma \in \mathcal{B}_n : \langle \sigma, X_i \rangle \geq \kappa \sqrt{n} \Big\} \quad \text{and} \quad p'_{\alpha}(\kappa) = \mathbb{P} \big[S'_{\alpha}(\kappa) \neq \varnothing \big].$$

Much less is known (rigorously)!

Conjecture

 $\lim_{n\to\infty} p'_{\alpha}(\kappa)$ undergoes a sharp phase transition at $\alpha_{\rm KM}(\kappa)$.

- $\alpha_{\rm KM}(0) \approx 0.833$ [KM89]. Significantly different from moment prediction ($\alpha = 1$).
- Even the very existence of PT is **open**!
- Lower bound [DS19]: $\liminf_{n} p'_{\alpha}(0) > 0$ for $\alpha < \alpha_{\text{KM}}(0)$.
- [KR98]: $p'_{\alpha}(0) = o(1)$ for $\alpha > 0.9963$; and $p'_{\alpha}(0) = 1 o(1)$ for $\alpha < 0.005$ (algorithmic).

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ の

SBP: Available Algorithmic Guarantees

Connection to combinatorial discrepancy theory:

 $\min_{\sigma \in \mathcal{B}_n} \left\| \mathcal{M} \sigma \right\|_{\infty} \quad \text{where} \quad \mathcal{M} \in \mathbb{R}^{M \times n}.$

Many (efficient) algorithms: [Rot17, LRR17, ES18, BS20]...

Theorem (Bansal and Spencer, 2020)

Fix $\kappa > 0$, $\alpha \leq K\kappa^2$. Let $\mathcal{M} \in \mathbb{R}^{\lfloor \alpha n \rfloor \times n}$ has i.i.d. Rademacher entries. Then, there exists a polynomial-time algorithm \mathcal{A} such that w.h.p.

$$\left\|\mathcal{MA}(\mathcal{M})\right\|_{\infty}\leq\kappa\sqrt{n}.$$

- K > 0 absolute constant.
- Computational Threshold: $\Theta(\kappa^2)$. Our benchmark.

SBP: A Statistical-to-Computational Gap

Gap between existential guarantees and what polynomial-time algorithms can promise. Much more dramatic for $\kappa \to 0$:

As $\kappa \to 0$,

$$\alpha_{c}(\kappa) = -\frac{1}{\log_{2} \mathbb{P}[|\mathcal{N}(0,1)| \leq \kappa]} \approx -\frac{1}{\log_{2} \kappa}.$$

- $S_{\alpha}(\kappa) \neq \emptyset$ for $\alpha < -\frac{1}{\log_2 \kappa}$. Algorithms exist for $\alpha < K\kappa^2$.
- Ignoring K > 0, a striking gap: $-\frac{1}{\log_2 \kappa}$ vs κ^2 .

Source of this gap/hardness?

Given $\sigma \in S_{\alpha}(\kappa)$, if $\sigma^{(i)} \in S_{\alpha}(\kappa)$ then $1 \leq i \leq n$ is free. Otherwise frozen.

Theorem (Perkins-Xu'2021, Abbe-Li-Sly'2021)

Extreme clustering and freezing in SBP: For any $0 < \alpha < \alpha_c(\kappa)$, typical solutions of SBP are isolated (w.h.p.) and the distance to any other solution is $\Theta(n)$.

- Suggests that finding $\sigma \in S_{\alpha}(\kappa)$ is computationally hard.
- At odds with algorithms [BS20, BZ06, BBBZ07, Bal09, BB15].

Existence of polynomial-time algorithms coincides with clustering.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ○ ○ ○

Existence of polynomial-time algorithms coincides with clustering.

One Explanation.

Rare clusters (o(1) fraction) with **positive entropy density** ($e^{\Theta(n)}$ size) [ALS21a].

However:

- Large clusters exists at all $0 < \alpha < \alpha_c(\kappa)$.
- No algorithmic improvement over κ^2 .

13/40

Common feature in many algorithmic problems in high-dimensional statistics & random combinatorial structures:

Random k-SAT, optimization over random graphs, *p*-spin model, number partitioning, planted clique, matrix PCA, linear regression, spiked tensor, largest submatrix problem...

No analogue of worst-case theory (such as $P \neq NP$).

イロト 不得 トイヨト イヨト

Various forms of rigorous evidences:

- Low-degree methods: [Hop18, KWB19, Wei20]...
- Reductions from the planted clique: [BR13, BBH18, BB19]...
- Many more: Failure of MCMC, Failure of BP/AMP, Methods from Statistical Physics, SoS Lower Bounds,... [Jer92, HSS15, LKZ15, ZK16, HKP+17, DKS17, BHK+19]...

Another approach (spin glass theory): **Overlap Gap Property**.

The Overlap Gap Property (OGP)

Generic optimization problem with random ξ : $\min_{\theta \in \Theta} \mathcal{L}(\sigma, \xi)$. For SBP,

 $\mathcal{L}(\sigma, \mathcal{M}) \triangleq \sum_{1 \le i \le M} \mathbb{1}\left\{ \left| \langle \sigma, X_i \rangle \right| > \kappa \sqrt{n} \right\}. \quad (\# \text{ of violated constraints.})$

(Informally) OGP for energy \mathcal{E} if $\exists 0 < \nu_1 < \nu_2$ s.t. $\forall \sigma_1, \sigma_2 \in \Theta$,

 $\mathcal{L}(\sigma_j,\xi) \leq \mathcal{E} \implies \text{distance}(\sigma_1,\sigma_2) < \nu_1 \quad \text{or} \quad \text{distance}(\sigma_1,\sigma_2) > \nu_2.$

Any two **near optimal** σ_1, σ_2 are either too similar or too dissimilar.

distance (\cdot, \cdot)

For $\Theta = \mathcal{B}_n = \{-1, 1\}^n$, normalized overlap:

$$\mathcal{O}(\sigma,\sigma')=n^{-1}\langle\sigma,\sigma'
angle\in [0,1].$$

Large $\mathcal{O} \iff$ Small $d_H \iff$ Similar $\sigma \approx \sigma'$.

E. C. Kızıldağ (MIT)

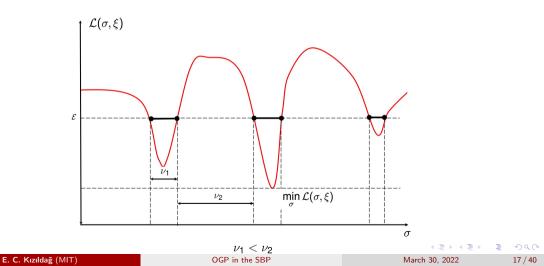
OGP in the SBP

March 30, 2022

16/40

Overlap Gap Property - A Pictorial Illustration

 $\mathsf{OGP} \text{ for } \mathcal{E}.$



- **Clustering in** *k*-**SAT**: Solution space consists of disconnected clusters [MMZ05, ACO08, ACORT11].
- First algorithmic implication: Max independent set in random d-regular graph $\mathbb{G}_d(n)$. [GS17a].
- OGP: Any large $\mathcal{I}_1, \mathcal{I}_2$ either have **significant** intersection, or **no** intersection at all.
- Local algorithms fail to return a large \mathcal{I} .

(4) E > (4) E >

Many other problems with OGP:

random k-SAT, NAE-k-SAT, *p*-spin model, number partitioning, sparse PCA, largest submatrix problem, max-CUT, planted clique...

OGP as a *provable barrier* to algorithms:

WALKSAT, local algorithms, stable algorithms, low-degree polynomials, AMP, MCMC... [COHH17, GS17b, GJW20, Wei20, Gam21, GJS19, GK21, BH21]...

Overview

Introduction

- Model and Motivation
- Prior Work
- Statistical-to-Computational Gaps, Clustering, and Freezing in SBP
- The Overlap Gap Property (OGP)

2 Contributions: Properties of the Landscape of SBP

- High κ Regime: 2–OGP and Ensemble–3–OGP for $\kappa = 1$.
- Low κ Regime: Ensemble-*m*-OGP as $\kappa \to 0$.

3 Contributions: Results Regarding Algorithms

- Stable Algorithms: Definition and Examples.
- Kim-Roche Algorithm is Stable.
- OGP Implies Failure of Stable Algorithms
- 4 Conclusion and Future Research
 - Summary of Contributions
 - Future Work

High κ Regime

Recall the setup. $M = \lfloor n\alpha \rfloor$ and $X_i \stackrel{d}{=} \mathcal{N}(0, I_n), 1 \leq i \leq M$ i.i.d.

$$S_{\alpha}(\kappa) = \bigcap_{1 \leq i \leq M} \Big\{ \sigma \in \mathcal{B}_n : \big| \langle \sigma, X_i \rangle \big| \leq \kappa \sqrt{n} \Big\} = \Big\{ \sigma \in \mathcal{B}_n : \big\| \mathcal{M}\sigma \big\|_{\infty} \leq \kappa \sqrt{n} \Big\}.$$

High κ **Regime.** $\kappa = 1$ as running example.

$$lpha_{c}(\kappa) = -rac{1}{\log_{2}\mathbb{P}\big[|\mathcal{N}(0,1)| \leq 1\big]} pprox 1.8158.$$

Namely, $S_{\alpha}(1) \neq \emptyset$ (w.h.p.) for $\alpha < 1.8158$.

Question.

Is it possible to efficiently find a $\sigma \in S_{\alpha}(1)$ when $\alpha < 1.8158$?

-	-			/ s . s
LE .	C	K171	Idag	(MIT
			- aab	

▶ ◀ ∰ ▶ ◀ 볼 ▶ ◀ 볼 ▶ March 30, 2022

21 / 40

Our Contributions: 2–OGP for SBP when $\kappa = 1$.

Let $\mathcal{M} \in \mathbb{R}^{M \times n}$ with rows $X_1, \ldots, X_M \in \mathbb{R}^n$, $M = \lfloor \alpha n \rfloor$.

Theorem (Gamarnik, **K.**, Perkins, and Xu, 2022+)

(Informally) 2-OGP (for $\kappa = 1$) holds if $\alpha \ge 1.71$. Formally, $\forall \alpha \ge 1.71$, $\exists 1 > \beta > \eta > 0$ such that w.h.p. for any distinct $\sigma_1, \sigma_2 \in \mathcal{B}_n$ with $\|\mathcal{M}\sigma_1\|_{\infty} \le \sqrt{n}$ and $\|\mathcal{M}\sigma_2\|_{\infty} \le \sqrt{n}$; $n^{-1}\langle \sigma_1, \sigma_2 \rangle \notin [\beta - \eta, \beta]$.

- Suggests that finding a $\sigma \in S_{\alpha}(1)$ is computationally **intractable** if $\alpha \geq 1.71$.
- Proof based on first moment method and Gaussian comparison inequality [Sid68].

Proof Sketch. Let N count # such (σ_1, σ_2) . Show $\mathbb{E}[N] = o(1)$ for appropriate $1 > \beta > \eta > 0$ and apply Markov's inequality $\mathbb{P}[N \ge 1] \le \mathbb{E}[N]$.

- Consider i.i.d. matrices $\mathcal{M}_i \in \mathbb{R}^{M \times n}, 0 \leq i \leq m$.
- Each \mathcal{M}_i have i.i.d. $\mathcal{N}(0, 1)$ entries.
- Consider interpolation

$$\mathcal{M}_i(au) = \cos(au)\mathcal{M}_0 + \sin(au)\mathcal{M}_i \in \mathbb{R}^{M imes n}, \quad au \in \left[0, rac{\pi}{2}
ight], \quad 1 \leq i \leq m.$$

• For each $0 \le \tau \le \frac{\pi}{2}$ and $1 \le i \le m$, $\mathcal{M}_i(\tau)$ has i.i.d. $\mathcal{N}(0,1)$ entries.

March 30, 2022

э

m-tuples $\sigma_i \in \mathcal{B}_n$ (*m*-OGP); each satisfy constraints $\mathcal{M}_i(\tau_i)$, $\exists \tau_i \in [0, \pi/2]$ (ensemble).

• *m*-**OGP**: Reduces thresholds further: Max independent set in $\mathbb{G}_d(n)$.

- Computational threshold $(\log d/d)n$, 2-OGP rules out $|\mathcal{I}| \ge (1 + 1/\sqrt{2})(\log d/d)n$.
- [RV17]: Study instead *m*-tuples \mathcal{I}_i , $1 \le i \le m$: hit $(\log d/d)n$.
- Similar story for NAE-k-SAT [GS17b].

• Ensemble OGP: Can rule out any sufficiently stable algorithm [GJW20, Wei20, Gam21, GK21, BH21, HS21].

イロト 不得 トイヨト イヨト 二日

Our Contributions: Ensemble 3–OGP for SBP when $\kappa = 1$.

Theorem (Gamarnik, K., Perkins, and Xu, 2022+)

(Informally) Ensemble 3–OGP (for $\kappa = 1$) holds if $\alpha \ge 1.667$ Formally, $\forall \alpha \ge 1.667$, $\forall \mathcal{I} \subset [0, \pi/2]$ with $|\mathcal{I}| = 2^{O(n)}$, $\exists 1 > \beta > \eta > 0$ s.t. w.h.p. if

$$ig\|\mathcal{M}_i(au_i)\sigma_iig\|_\infty \leq \sqrt{n}, \quad au_i \in \mathcal{I}, \quad 1\leq i\leq 3$$

then $\exists 1 \leq i < j \leq 3$ such that

$$n^{-1}\langle \sigma_i, \sigma_j \rangle \notin (\beta - \eta, \beta).$$

• $\beta \gg \eta$: rules out **equilateral triangles** in Hamming space.

• Proof based again on first moment method and Gaussian comparison inequality [Sid68].

25 / 40

Low κ regime: Ensemble *m*-OGP beyond *m* = 3

More **intricate** structure \implies Hardness for broader α .

- 3-OGP requires exact counting (up to lower order terms).
- Counting term **intractable** for $m \ge 4$.

How about small κ regime?

$\kappa ightarrow 0$

 $\kappa = 1$

- For $\sigma_i \in \mathcal{B}_n$ and correlated $X_i \stackrel{d}{=} \mathcal{N}(0, I_n)$, $1 \le i \le m$; $\mathbb{P}[|\langle \sigma_i, X_i \rangle| \le \kappa, 1 \le i \le m]$ controlled by volume of $[-\kappa, \kappa]^m$.
- Main Idea: If κ small, $(2\kappa)^m$ shrinks further with *m* large.

Our Contributions: Ensemble-*m*-OGP for SBP when $\kappa \rightarrow 0$.

Theorem (Gamarnik, K., Perkins, and Xu, 2022+)

(Informally) Ensemble m-OGP (as $\kappa \to 0$, for appropriate $m \in \mathbb{N}$) holds if $\alpha = \Omega(\kappa^2 \log_2 \frac{1}{\kappa})$. Formally, $\forall \kappa > 0$ small enough, $\forall \alpha \ge 10\kappa^2 \log_2 \frac{1}{\kappa}$, $\forall \mathcal{I} \subset [0, \pi/2]$ with $|\mathcal{I}| = 2^{O(n)}$, $\exists m \in \mathbb{N}$, $\exists 1 > \beta > \eta > 0$ s.t. w.h.p. if

$$\left\|\mathcal{M}_{i}(\tau_{i})\sigma_{i}\right\|_{\infty}\leq\kappa\sqrt{n},\quad au_{i}\in\mathcal{I},\quad 1\leq i\leq m$$

then $\exists 1 \leq i < j \leq m$ such that

$$n^{-1}\langle \sigma_i,\sigma_j\rangle \notin (\beta-\eta,\beta).$$

- Ensemble *m*-OGP **above** $\kappa^2 \log_2 \frac{1}{\kappa}$.
- Nearly tight: almost matches algorithmic threshold κ^2 (modulo $\log_2 \frac{1}{\kappa}$ factor)
- $\beta \gg \eta$: *m*-tuple of **equidistant** points. **Best rate** with this approach.

OGP in the SBP

Overview

Introduction

- Model and Motivation
- Prior Work
- Statistical-to-Computational Gaps, Clustering, and Freezing in SBP
- The Overlap Gap Property (OGP)
- 2 Contributions: Properties of the Landscape of SBP
 - High κ Regime: 2–OGP and Ensemble–3–OGP for $\kappa = 1$.
 - Low κ Regime: Ensemble-*m*-OGP as $\kappa \rightarrow 0$.
- Ontributions: Results Regarding Algorithms
 - Stable Algorithms: Definition and Examples.
 - Kim-Roche Algorithm is Stable.
 - OGP Implies Failure of Stable Algorithms
 - 4 Conclusion and Future Research
 - Summary of Contributions
 - Future Work

Problems with OGP and Algorithms Hardness Results

- Random walk type algorithms for random k-SAT [COHH17].
- Low-degree polynomials for random k-SAT [BH21].
- Sequential local algorithms for NAE-k-SAT [GS17b].
- Low-degree polynomials and Langevin dynamics [GJW20, Wei20].
- AMP for optimizing *p*-spin model Hamiltonian [GJ21a].
- Overlap concentrated algorithms ¹ for mixed, even p-spin model Hamiltonian [HS21]
- Low-depth circuits for even *p*-spin model Hamiltonian [GJW21].
- OGP \implies FEW \implies Failure of MCMC: Principle submatrix problem [GJS19].

¹Includes *O*(1) iteration of GD, AMP; and Langevin Dynamics run for *O*(1) time.

Stable Algorithms: Formal Definition

- Algorithm $\mathcal{A} : \mathbb{R}^{M \times n} \to \mathcal{B}_n$ $(M = \lfloor \alpha n \rfloor$ and $\alpha < \alpha_c(\kappa)$). $\mathcal{A}(\mathcal{M}) = \sigma \in \mathcal{B}_n$.
- Potentially randomized.
- Informal: \mathcal{A} is stable if small change in \mathcal{M} yields small change in $\mathcal{A}(\mathcal{M})$.

Semi-formally, $\mathcal A$ satisfies

Definition

(a) Success:

$$\mathbb{P}\Big[\big\| \mathcal{M}\mathcal{A}\big(\mathcal{M}\big) \big\|_{\infty} \leq \kappa \sqrt{n} \Big] \geq 1 - p_f.$$

(b) **Stability**: $\exists \rho \in (0,1]$, $\mathcal{M}, \overline{\mathcal{M}} \in \mathbb{R}^{M \times n}$ having $\mathcal{N}(0,1)$ entries with $\operatorname{Cov}(\mathcal{M}_{ij}, \overline{\mathcal{M}}_{ij}) = \rho$;

$$\mathbb{P}\Big[d_{H}\big(\mathcal{A}(\mathcal{M}),\mathcal{A}(\overline{\mathcal{M}})\big) \leq f + L \|\mathcal{M} - \overline{\mathcal{M}}\|_{\textit{F}}\Big] \geq 1 - \textit{p}_{\mathrm{st}}.$$

・ロト ・四ト ・日ト ・日ト ・日

Stable Algorithms: Which Algorithms are Stable?

Stable algorithms include

- Approximate message passing type algorithms [GJ21b, Gam21].
- Low-degree polynomial based algorithms [GJW20].

Kim-Roche Algorithm for (Asymmetric) Perceptron [KR98].

- $S'_{\alpha}(0) \neq \emptyset$ (w.h.p.) when $\alpha < 0.005$.
- Proof is algorithmic: multi-stage majority.
- Recently extended to SBP by Abbe, Li, and Sly [ALS21a].

Is multi-stage majority stable?

Our Contributions: Kim-Roche Algorithm is Stable.

• Let $\alpha < 0.005$, $M = \lfloor n\alpha \rfloor$. $\mathcal{M}, \mathcal{M}' \in \mathbb{R}^{M \times n}$ i.i.d. with i.i.d $\mathcal{N}(0, 1)$ entries; and

 $\mathcal{M}(\tau) = \cos(\tau)\mathcal{M} + \sin(\tau)\mathcal{M}' \in \mathbb{R}^{M \times n}.$

Theorem (Gamarnik, K., Perkins, and Xu, 2022+)

(Informal) Kim-Roche algorithm, $A_{\rm KR}$ [KR98] is stable. Set $\tau = n^{-0.02}$. Then,

$$\mathbb{P}\Big[d_{H}\big(\mathcal{A}_{\mathrm{KR}}(\mathcal{M}),\mathcal{A}_{\mathrm{KR}}(\mathcal{M}(\tau))\big)=o(n)\Big]\geq 1-O\big(n^{-\frac{1}{41}}\big).$$

Namely, $\mathcal{A}_{\mathrm{KR}}$ is stable with

$$p_f = o(n^{-1}), \ p_{\rm st} = O(n^{-1/41}), \ \rho = \cos(n^{-0.02}),$$

and any $f = \Theta(n), L > 0$.

E. C. Kızıldağ (MIT)

OGP in the SBP

Our Contributions: OGP implies Failure of Stable Algorithms

Theorem (Gamarnik, **K.**, Perkins, and Xu, 2022+)

For $\alpha = \Omega(\kappa^2 \log_2 \frac{1}{\kappa})$, there is no stable \mathcal{A} for SBP (with appropriate f, ρ, p_f, p_{st}).

- Rule out p_f , $p_{st} = O(1)$. No need for high-probability guarantee.
- **Proof Idea.** By contradiction. Suppose $\exists A$.
 - *m*-OGP: a structure occurs with *vanishing* probability.
 - Run \mathcal{A} on correlated instances. Show that w.p. > 0, forbidden structure occurs.
- Proof based on Ramsey Theory [GK21].

33 / 40

Our Contributions: Failure of Online Algorithms

Disorder $\mathcal{M} \in \mathbb{R}^{M \times n}$, columns $\mathcal{C}_i \in \mathbb{R}^M$, $1 \le i \le n$. $\mathcal{A}(\mathcal{M}) = (\sigma_i : 1 \le i \le n) \in \mathcal{B}_n$.

Definition

 \mathcal{A} is **online** if $\exists f_t$ such that $\sigma_t = f_t(\mathcal{C}_i : 1 \leq i \leq t)$ for $1 \leq t \leq n$.

Online Algorithms: Bansal-Spencer [BS20].

Theorem (Gamarnik, **K.**, Perkins, and Xu, 2022+)

 $\exists \epsilon > 0$ such that for $\alpha \geq \alpha_c(\kappa) - \epsilon$, there is no online \mathcal{A} for SBP.

Proof Idea. By contradiction. A forbidden structure different than OGP.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○

Overview

Introduction

- Model and Motivation
- Prior Work
- Statistical-to-Computational Gaps, Clustering, and Freezing in SBP
- The Overlap Gap Property (OGP)
- 2 Contributions: Properties of the Landscape of SBP
 - High κ Regime: 2–OGP and Ensemble–3–OGP for $\kappa = 1$.
 - Low κ Regime: Ensemble-*m*-OGP as $\kappa \rightarrow 0$.
- 3 Contributions: Results Regarding Algorithms
 - Stable Algorithms: Definition and Examples.
 - Kim-Roche Algorithm is Stable.
 - OGP Implies Failure of Stable Algorithms
- 4 Conclusion and Future Research
 - Summary of Contributions
 - Future Work

• • = • • = •

Main Contributions

Two Conundrums in SBP

- A Statistical-to-Computational Gap: $-\frac{1}{\log_2 \kappa}$ vs κ^2 .
- Clustering coincides with efficient algorithms.

Landscape of SBP

- High κ ($\kappa = O(1)$): Presence of 2–OGP and (Ensemble) 3–OGP, strictly below $\alpha_c(\kappa)$.
- Low κ ($\kappa \to 0$): Presence of (Ensemble) m-OGP for $\alpha = \Omega(\kappa^2 \log_2 \frac{1}{\kappa})$.

Algorithmic Results

- Kim-Roche algorithm is stable.
- Stable algorithms fail to find a solution if $\alpha = \Omega(\kappa^2 \log_2 \frac{1}{\kappa})$.
- Online algorithms fail to find a solution for sufficiently large densities.

Universality: Gaussianity of disorder ${\mathcal M}$ immaterial. Extends via Berry-Esseen ,

E. C. Kızıldağ (MIT)

OGP in the SBP

Some major challenges.

- (Ensemble) Multi-OGP for $\kappa = O(1)$.
- Closing the gap, $\kappa^2 \text{ vs } \kappa^2 \log_2 \frac{1}{\kappa}$.
 - Rate $\kappa^2 \log_2 \frac{1}{\kappa}$ best possible with our approach.
 - More delicate structure [BH21, HS21]?
- Establishing stability of Bansal-Spencer algorithm [BS20].
- True algorithmic threshold.

A Conjecture: True Algorithmic Threshold

 $\alpha_m^*(\kappa)$: smallest $\alpha < \alpha_c(\kappa)$ such that m-OGP holds (with proper $0 < \eta < \beta < 1$). Set

 $\alpha_{\rm ALG}(\kappa) = \lim_{m \to \infty} \alpha_m^*(\kappa).$

Conjecture (Existence Threshold for Efficient Algorithms)

Let $\alpha > \alpha_{ALG}(\kappa)$, $\mathcal{M} \in \mathbb{R}^{M \times n}$ $(M = \lfloor n\alpha \rfloor)$ with *i.i.d.* $\mathcal{N}(0, 1)$ entries. Then, **no** (randomized) efficient algorithm \mathcal{A} such that

$$\mathbb{P}\Big[ig\|\mathcal{MA}(\mathcal{M})ig\|_{\infty}\leq\kappa\sqrt{n}\Big]\geq1-o(1).$$

E .	<u> </u>	K	dağı	(VALT.
E. 1	с.	NIZI	ldağ i	

OGP in the SBP

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○ March 30, 2022

38 / 40

What is the largest class of algorithms ruled out by OGP?

Naturally includes **stable** algorithms and **MCMC**.

Is there a problem with OGP yet admitting a polynomial-time algorithm?

Thank you!

E. C. Kızıldağ (MIT)

▲ □ ▶ ▲ 圖 ▶ ▲ 圖 ▶ ▲ 圖 ▶
March 30, 2022

40 / 40

э

References I

- Dimitris Achlioptas and Amin Coja-Oghlan, *Algorithmic barriers from phase transitions*, 2008 49th Annual IEEE Symposium on Foundations of Computer Science, IEEE, 2008, pp. 793–802.
- Dimitris Achlioptas, Amin Coja-Oghlan, and Federico Ricci-Tersenghi, On the solution-space geometry of random constraint satisfaction problems, Random Structures & Algorithms 38 (2011), no. 3, 251–268.
- Emmanuel Abbe, Shuangping Li, and Allan Sly, *Binary perceptron: efficient algorithms can find solutions in a rare well-connected cluster*, arXiv preprint arXiv:2111.03084 (2021).
- Proof of the contiguity conjecture and lognormal limit for the symmetric perceptron, arXiv preprint arXiv:2102.13069 (2021).

References II

- Benjamin Aubin, Will Perkins, and Lenka Zdeborová, *Storage capacity in symmetric binary perceptrons*, Journal of Physics A: Mathematical and Theoretical **52** (2019), no. 29, 294003.
- Carlo Baldassi, *Generalization learning in a perceptron with binary synapses*, Journal of Statistical Physics **136** (2009), no. 5, 902–916.
- Carlo Baldassi and Alfredo Braunstein, A max-sum algorithm for training discrete neural networks, Journal of Statistical Mechanics: Theory and Experiment 2015 (2015), no. 8, P08008.
- Matthew Brennan and Guy Bresler, *Optimal average-case reductions to sparse pca: From weak assumptions to strong hardness*, arXiv preprint arXiv:1902.07380 (2019).

LE .		KIZI	dag	(MIT
	· · ·		aab	(

References III

- Carlo Baldassi, Alfredo Braunstein, Nicolas Brunel, and Riccardo Zecchina, *Efficient supervised learning in networks with binary synapses*, Proceedings of the National Academy of Sciences **104** (2007), no. 26, 11079–11084.
- Matthew Brennan, Guy Bresler, and Wasim Huleihel, *Reducibility and computational lower bounds for problems with planted sparse structure*, arXiv preprint arXiv:1806.07508 (2018).
- Carlo Baldassi, Riccardo Della Vecchia, Carlo Lucibello, and Riccardo Zecchina, Clustering of solutions in the symmetric binary perceptron, Journal of Statistical Mechanics: Theory and Experiment 2020 (2020), no. 7, 073303.
- Guy Bresler and Brice Huang, *The algorithmic phase transition of random k-sat for low degree polynomials*, arXiv preprint arXiv:2106.02129 (2021).

References IV

- Boaz Barak, Samuel Hopkins, Jonathan Kelner, Pravesh K Kothari, Ankur Moitra, and Aaron Potechin, A nearly tight sum-of-squares lower bound for the planted clique problem, SIAM Journal on Computing 48 (2019), no. 2, 687–735.
- Quentin Berthet and Philippe Rigollet, *Computational lower bounds for sparse pca*, arXiv preprint arXiv:1304.0828 (2013).
- Nikhil Bansal and Joel H. Spencer, *On-line balancing of random inputs*, Random Structures and Algorithms 57 (2020), no. 4, 879–891 (English (US)), Funding Information: This research was supported by the NWO Vici grant, 639.023.812. ERC Consolidator grant, 617951 [N.B.]. Funding information Publisher Copyright: © 2020 Wiley Periodicals LLC.
 - Alfredo Braunstein and Riccardo Zecchina, *Learning by message passing in networks of discrete synapses*, Physical review letters **96** (2006), no. 3, 030201.

人口 医水理 医水黄 医水黄素 计算

References V

- Amin Coja-Oghlan, Amir Haqshenas, and Samuel Hetterich, *Walksat stalls well below satisfiability*, SIAM Journal on Discrete Mathematics **31** (2017), no. 2, 1160–1173.
- Thomas M Cover, *Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition*, IEEE transactions on electronic computers (1965), no. 3, 326–334.
- Karthekeyan Chandrasekaran and Santosh S Vempala, *Integer feasibility of random polytopes: random integer programs*, Proceedings of the 5th conference on Innovations in theoretical computer science, 2014, pp. 449–458.
- Ilias Diakonikolas, Daniel M Kane, and Alistair Stewart, Statistical query lower bounds for robust estimation of high-dimensional gaussians and gaussian mixtures, 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS), IEEE, 2017, pp. 73–84.

・ ロ ト ・ 雪 ト ・ ヨ ト ・ ヨ ト

References VI

- Jian Ding and Nike Sun, *Capacity lower bound for the ising perceptron*, Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, 2019, pp. 816–827.
- Ronen Eldan and Mohit Singh, Efficient algorithms for discrepancy minimization in convex sets, Random Structures & Algorithms 53 (2018), no. 2, 289–307.
- David Gamarnik, *The overlap gap property: A topological barrier to optimizing over random structures*, Proceedings of the National Academy of Sciences **118** (2021), no. 41.
- Elizabeth Gardner, *Maximum storage capacity in neural networks*, EPL (Europhysics Letters) **4** (1987), no. 4, 481.
- The space of interactions in neural network models, Journal of physics A: Mathematical and general **21** (1988), no. 1, 257.
- Elizabeth Gardner and Bernard Derrida, *Optimal storage properties of neural network models*, Journal of Physics A: Mathematical and general **21** (1988), no. 1, 271.

References VII

- David Gamarnik and Aukosh Jagannath, The overlap gap property and approximate message passing algorithms for p-spin models, The Annals of Probability 49 (2021), no. 1, 180–205.
- The overlap gap property and approximate message passing algorithms for p-spin models, The Annals of Probability **49** (2021), no. 1, 180–205.
- David Gamarnik, Aukosh Jagannath, and Subhabrata Sen, *The overlap gap property in principal submatrix recovery*, arXiv preprint arXiv:1908.09959 (2019).
- David Gamarnik, Aukosh Jagannath, and Alexander S Wein, Low-degree hardness of random optimization problems, 2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS), 2020.
 - _____, *Circuit lower bounds for the p-spin optimization problem*, arXiv preprint arXiv:2109.01342 (2021).

- コット (日本) (日本) (日本)

References VIII

- David Gamarnik and Eren C Kızıldağ, *Algorithmic obstructions in the random number partitioning problem*, arXiv preprint arXiv:2103.01369 (2021).
- David Gamarnik and Madhu Sudan, Limits of local algorithms over sparse random graphs, Ann. Probab. 45 (2017), no. 4, 2353–2376.
- SIAM Journal on Computing **46** (2017), no. 2, 590–619.
- Samuel B Hopkins, Pravesh K Kothari, Aaron Potechin, Prasad Raghavendra, Tselil Schramm, and David Steurer, *The power of sum-of-squares for detecting hidden structures*, 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS), IEEE, 2017, pp. 720–731.
- Samuel Brink Klevit Hopkins, *Statistical inference and the sum of squares method*.

References IX

- Brice Huang and Mark Sellke, *Tight lipschitz hardness for optimizing mean field spin glasses*, arXiv preprint arXiv:2110.07847 (2021).
- Samuel B Hopkins, Jonathan Shi, and David Steurer, *Tensor principal component analysis via sum-of-square proofs*, Conference on Learning Theory, 2015, pp. 956–1006.
- Mark Jerrum, *Large cliques elude the metropolis process*, Random Structures & Algorithms **3** (1992), no. 4, 347–359.
- Werner Krauth and Marc Mézard, *Storage capacity of memory networks with binary couplings*, Journal de Physique **50** (1989), no. 20, 3057–3066.
- Jeong Han Kim and James R Roche, Covering cubes by random half cubes, with applications to binary neural networks, Journal of Computer and System Sciences 56 (1998), no. 2, 223–252.

・ コ ト ・ 西 ト ・ 日 ト ・ 日 ト

References X

- Dmitriy Kunisky, Alexander S Wein, and Afonso S Bandeira, *Notes on computational hardness of hypothesis testing: Predictions using the low-degree likelihood ratio*, arXiv preprint arXiv:1907.11636 (2019).
- Thibault Lesieur, Florent Krzakala, and Lenka Zdeborová, Phase transitions in sparse pca, 2015 IEEE International Symposium on Information Theory (ISIT), IEEE, 2015, pp. 1635–1639.
- Avi Levy, Harishchandra Ramadas, and Thomas Rothvoss, *Deterministic discrepancy minimization via the multiplicative weight update method*, International Conference on Integer Programming and Combinatorial Optimization, Springer, 2017, pp. 380–391.
- Marc Mézard, Thierry Mora, and Riccardo Zecchina, *Clustering of solutions in the random satisfiability problem*, Physical Review Letters **94** (2005), no. 19, 197205.

References XI

- Will Perkins and Changji Xu, *Frozen 1-rsb structure of the symmetric ising perceptron*, Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing, 2021, pp. 1579–1588.
- Thomas Rothvoss, *Constructive discrepancy minimization for convex sets*, SIAM Journal on Computing **46** (2017), no. 1, 224–234.
- Mustazee Rahman and Balint Virag, *Local algorithms for independent sets are half-optimal*, The Annals of Probability **45** (2017), no. 3, 1543–1577.
- Zbynek Sidák, *On multivariate normal probabilities of rectangles: their dependence on correlations*, The Annals of Mathematical Statistics **39** (1968), no. 5, 1425–1434.
- Alexander S Wein, *Optimal low-degree hardness of maximum independent set*, arXiv preprint arXiv:2010.06563 (2020).

- James G Wendel, *A problem in geometric probability*, Mathematica Scandinavica **11** (1962), no. 1, 109–111.
- Lenka Zdeborová and Florent Krzakala, *Statistical physics of inference: Thresholds and algorithms*, Advances in Physics **65** (2016), no. 5, 453–552.