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Symmetric Binary Perceptron (SBP): Model.

Fix κ, α > 0, and set M = ⌊nα⌋. Let Xi
d
= N (0, In), 1 ≤ i ≤ M be i.i.d.

Consider (random) set

Sα(κ) ≜
⋂

1≤i≤M

{
σ ∈ Bn :

∣∣⟨σ,Xi ⟩
∣∣ ≤ κ

√
n
}
,

where
Bn = {−1, 1}n and ⟨σ,Xi ⟩ =

∑
1≤j≤n

σjXi (j).

Equivalently, for disorder M ∈ RM×n with rows X1,X2, . . . ,XM ∈ Rn,

Sα(κ) =
{
σ ∈ Bn :

∥∥Mσ
∥∥
∞ ≤ κ

√
n
}
.
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Perceptron Model: Motivation

Toy one-layer neural network [Wen62, Cov65].

Patterns Xi ∈ Rn, 1 ≤ i ≤ M to be stored.

Storage: Find a σ ∈ Bn consistent with all Xi : ⟨σ,Xi ⟩ ≥ 0, 1 ≤ i ≤ M.

Storage Capacity: Maximum number of stored patterns M∗.

- M∗/n, as n → ∞.
- Detailed picture by statistical physicists [Gar87, Gar88, GD88].
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Perceptron Model: Motivation

Connection to Constraint Satisfaction Problems (CSPs):

Each constraint Xi ∈ Rn rules out certain σ ∈ Bn.

α ≜ M/n is constraint density.

Symmetric model, SBP [APZ19]: σ ∈ Sα(κ) ⇐⇒ −σ ∈ Sα(κ).

Similar structural properties as asymmetric version [BDVLZ20].

Easier math: analogy with k − SAT vs. NAE− k − SAT.

SBP: Also related to combinatorial discrepancy theory [CV14, BS20].
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Our Work: Two Mysteries in SBP and OGP

Statistical-to-computational gaps:

Gap between existential guarantees and (polynomial-time) algorithmic guarantees.

SBP has a statistical-to-computational gap.

Origins of this gap? Landscape of SBP via statistical physics lens.

Extreme Clustering:

Typical solutions of SBP are Θ(n) apart isolated singletons.

Suggests algorithmic hardness.

A Conundrum. Coincides with polynomial-time algorithms.

This work: Overlap Gap Property (OGP). Intricate geometrical property.

Leverage OGP to rule out important classes of algorithms.

OGP =⇒ Hardness. Clustering ≠⇒ Hardness.
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SBP: Main Questions

Recall

Sα(κ) =
⋂

1≤i≤M

{
σ ∈ Bn :

∣∣⟨σ,Xi ⟩
∣∣ ≤ κ

√
n
}
=

{
σ ∈ Bn :

∥∥Mσ
∥∥
∞ ≤ κ

√
n
}
.

Proportional Regime: M, n → ∞ while M/n → α. Fix κ > 0 and vary α.

Structural Question. Sα(κ) empty/non-empty (w.h.p.) & its geometry.

Algorithmic Question: Efficient (polynomial-time) algorithms for finding σ ∈ Sα(κ).
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SBP: Available Structural Results

Sharp Phase Transition. Set pα(κ) ≜ P
[
Sα(κ) ̸= ∅

]
.

lim
n→∞

pα(κ) =

{
1, if α < αc(κ)

0, if α > αc(κ)
, where αc(κ) = − 1

log2 P
[
|N (0, 1)| ≤ κ

] .
αc(κ) matches first moment prediction: E

[∣∣Sα(κ)∣∣] = o(1) iff α > αc(κ).

For α < αc(κ):

[APZ19]: lim infn pα(κ) > 0 by 2nd Moment Method.

[PX21, ALS21b]: limn pα(κ) = 1− o(1). More delicate tools.
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Asymmetric Model: Available Structural Results

Fix α > 0, let M = ⌊nα⌋ and Xi
d
= N (0, In), 1 ≤ i ≤ M i.i.d. Set

S ′
α(κ) =

⋂
1≤i≤M

{
σ ∈ Bn : ⟨σ,Xi ⟩ ≥ κ

√
n
}

and p′α(κ) = P
[
S ′
α(κ) ̸= ∅

]
.

Much less is known (rigorously)!

Conjecture

limn→∞ p′α(κ) undergoes a sharp phase transition at αKM(κ).

αKM(0) ≈ 0.833 [KM89]. Significantly different from moment prediction (α = 1).

Even the very existence of PT is open!

Lower bound [DS19]: lim infn p
′
α(0) > 0 for α < αKM(0).

[KR98]: p′α(0) = o(1) for α > 0.9963; and p′α(0) = 1− o(1) for α < 0.005 (algorithmic).
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SBP: Available Algorithmic Guarantees

Connection to combinatorial discrepancy theory:

min
σ∈Bn

∥∥Mσ
∥∥
∞ where M ∈ RM×n.

Many (efficient) algorithms: [Rot17, LRR17, ES18, BS20]...

Theorem (Bansal and Spencer, 2020)

Fix κ > 0, α ≤ Kκ2. Let M ∈ R⌊αn⌋×n has i.i.d. Rademacher entries. Then, there exists a
polynomial-time algorithm A such that w.h.p.∥∥MA

(
M

)∥∥
∞ ≤ κ

√
n.

K > 0 absolute constant.

Computational Threshold: Θ
(
κ2

)
. Our benchmark.
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SBP: A Statistical-to-Computational Gap

Gap between existential guarantees and what polynomial-time algorithms can promise.

Much more dramatic for κ → 0:

As κ → 0,

αc(κ) = − 1

log2 P
[∣∣N (0, 1)

∣∣ ≤ κ
] ≈ − 1

log2 κ
.

Sα(κ) ̸= ∅ for α < − 1
log2 κ

. Algorithms exist for α < Kκ2.

Ignoring K > 0, a striking gap: − 1
log2 κ

vs κ2.

Source of this gap/hardness?
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SBP: Clustering and Freezing

Given σ ∈ Sα(κ), if σ
(i) ∈ Sα(κ) then 1 ≤ i ≤ n is free. Otherwise frozen.

Theorem (Perkins-Xu’2021, Abbe-Li-Sly’2021)

Extreme clustering and freezing in SBP: For any 0 < α < αc(κ), typical solutions of SBP
are isolated (w.h.p.) and the distance to any other solution is Θ(n).

Suggests that finding σ ∈ Sα(κ) is computationally hard.

At odds with algorithms [BS20, BZ06, BBBZ07, Bal09, BB15].

Existence of polynomial-time algorithms coincides with clustering.
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SBP: Clustering and Freezing

Existence of polynomial-time algorithms coincides with clustering.

One Explanation.

Rare clusters (o(1) fraction) with positive entropy density (eΘ(n) size) [ALS21a].

However:

Large clusters exists at all 0 < α < αc(κ).

No algorithmic improvement over κ2.
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Statistical-to-Computational Gaps

Common feature in many algorithmic problems in high-dimensional statistics & random
combinatorial structures:

Random k-SAT, optimization over random graphs, p-spin model, number partitioning, planted
clique, matrix PCA, linear regression, spiked tensor, largest submatrix problem...

No analogue of worst-case theory (such as P ̸= NP).
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Statistical-to-Computational Gaps

Various forms of rigorous evidences:

Low-degree methods: [Hop18, KWB19, Wei20]...

Reductions from the planted clique:
[BR13, BBH18, BB19]...

Many more: Failure of MCMC, Failure of BP/AMP, Methods from Statistical
Physics, SoS Lower Bounds,...
[Jer92, HSS15, LKZ15, ZK16, HKP+17, DKS17, BHK+19]...

Another approach (spin glass theory): Overlap Gap Property.
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The Overlap Gap Property (OGP)

Generic optimization problem with random ξ: minθ∈Θ L(σ, ξ). For SBP,

L
(
σ,M

)
≜

∑
1≤i≤M

1

{∣∣⟨σ,Xi ⟩
∣∣ > κ

√
n
}
. (# of violated constraints.)

(Informally) OGP for energy E if ∃0 < ν1 < ν2 s.t. ∀σ1, σ2 ∈ Θ,

L(σj , ξ) ≤ E =⇒ distance(σ1, σ2) < ν1 or distance(σ1, σ2) > ν2.

Any two near optimal σ1, σ2 are either too similar or too dissimilar.

distance(·, ·)
For Θ = Bn = {−1, 1}n, normalized overlap:

O(σ, σ′) = n−1⟨σ, σ′⟩ ∈ [0, 1].

Large O ⇐⇒ Small dH ⇐⇒ Similar σ ≈ σ′.
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Overlap Gap Property - A Pictorial Illustration

OGP for E .
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OGP: Prior Work

Clustering in k−SAT: Solution space consists of disconnected clusters
[MMZ05, ACO08, ACORT11].

First algorithmic implication: Max independent set in random d−regular graph Gd(n).
[GS17a].

OGP: Any large I1, I2 either have significant intersection, or no intersection at all.

Local algorithms fail to return a large I.
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OGP in Other Problems & OGP as a Provable Algorithmic Barrier

Many other problems with OGP:

random k-SAT, NAE-k-SAT, p-spin model, number partitioning, sparse PCA, largest submatrix
problem, max-CUT, planted clique...

OGP as a provable barrier to algorithms:

WALKSAT, local algorithms, stable algorithms, low-degree polynomials, AMP, MCMC...

[COHH17, GS17b, GJW20, Wei20, Gam21, GJS19, GK21, BH21]...
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High κ Regime

Recall the setup. M = ⌊nα⌋ and Xi
d
= N (0, In), 1 ≤ i ≤ M i.i.d.

Sα(κ) =
⋂

1≤i≤M

{
σ ∈ Bn :

∣∣⟨σ,Xi ⟩
∣∣ ≤ κ

√
n
}
=

{
σ ∈ Bn :

∥∥Mσ
∥∥
∞ ≤ κ

√
n
}
.

High κ Regime. κ = 1 as running example.

αc(κ) = − 1

log2 P
[
|N (0, 1)| ≤ 1

] ≈ 1.8158.

Namely, Sα(1) ̸= ∅ (w.h.p.) for α < 1.8158.

Question.

Is it possible to efficiently find a σ ∈ Sα(1) when α < 1.8158?
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Our Contributions: 2−OGP for SBP when κ = 1.

Let M ∈ RM×n with rows X1, . . . ,XM ∈ Rn, M = ⌊αn⌋.

Theorem (Gamarnik, K., Perkins, and Xu, 2022+)

(Informally) 2-OGP (for κ = 1) holds if α ≥ 1.71.
Formally, ∀α ≥ 1.71, ∃1 > β > η > 0 such that w.h.p. for any distinct σ1, σ2 ∈ Bn with∥∥Mσ1

∥∥
∞ ≤

√
n and

∥∥Mσ2
∥∥
∞ ≤

√
n; n−1⟨σ1, σ2⟩ /∈ [β − η, β].

Suggests that finding a σ ∈ Sα(1) is computationally intractable if α ≥ 1.71.

Proof based on first moment method and Gaussian comparison inequality [Sid68].

Proof Sketch. Let N count # such (σ1, σ2). Show E[N] = o(1) for appropriate
1 > β > η > 0 and apply Markov’s inequality P[N ≥ 1] ≤ E[N].
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Ensemble-Multi-OGP for SBP.

Consider i.i.d.matrices Mi ∈ RM×n, 0 ≤ i ≤ m.

Each Mi have i.i.d.N (0, 1) entries.

Consider interpolation

Mi (τ) = cos(τ)M0 + sin(τ)Mi ∈ RM×n, τ ∈
[
0,

π

2

]
, 1 ≤ i ≤ m.

For each 0 ≤ τ ≤ π
2 and 1 ≤ i ≤ m, Mi (τ) has i.i.d. N (0, 1) entries.
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Ensemble-Multi-OGP for SBP

m-tuples σi ∈ Bn (m−OGP); each satisfy constraints Mi (τi ), ∃τi ∈ [0, π/2] (ensemble).

m-OGP: Reduces thresholds further: Max independent set in Gd(n).

- Computational threshold (log d/d)n, 2-OGP rules out |I| ≥ (1 + 1/
√
2)(log d/d)n.

- [RV17]: Study instead m-tuples Ii , 1 ≤ i ≤ m: hit (log d/d)n.
- Similar story for NAE-k-SAT [GS17b].

Ensemble OGP: Can rule out any sufficiently stable algorithm
[GJW20, Wei20, Gam21, GK21, BH21, HS21].
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Our Contributions: Ensemble 3−OGP for SBP when κ = 1.

Theorem (Gamarnik, K., Perkins, and Xu, 2022+)

(Informally) Ensemble 3−OGP (for κ = 1) holds if α ≥ 1.667
Formally, ∀α ≥ 1.667, ∀I ⊂ [0, π/2] with |I| = 2O(n), ∃1 > β > η > 0 s.t. w.h.p. if∥∥Mi (τi )σi

∥∥
∞ ≤

√
n, τi ∈ I, 1 ≤ i ≤ 3

then ∃1 ≤ i < j ≤ 3 such that

n−1⟨σi , σj⟩ /∈ (β − η, β).

β ≫ η: rules out equilateral triangles in Hamming space.

Proof based again on first moment method and Gaussian comparison inequality [Sid68].
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Low κ regime: Ensemble m−OGP beyond m = 3

More intricate structure =⇒ Hardness for broader α.

κ = 1

αc(1) ≈ 1.8158. 2−OGP for α ≥ 1.71 & 3−OGP for α ≥ 1.667.

3-OGP requires exact counting (up to lower order terms).

Counting term intractable for m ≥ 4.

How about small κ regime?

κ → 0

For σi ∈ Bn and correlated Xi
d
= N (0, In), 1 ≤ i ≤ m; P

[
|⟨σi ,Xi ⟩| ≤ κ, 1 ≤ i ≤ m

]
controlled by volume of [−κ, κ]m.

Main Idea: If κ small, (2κ)m shrinks further with m large.
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Our Contributions: Ensemble-m-OGP for SBP when κ → 0.

Theorem (Gamarnik, K., Perkins, and Xu, 2022+)

(Informally) Ensemble m−OGP (as κ → 0, for appropriate m ∈ N) holds if α = Ω
(
κ2 log2

1
κ

)
.

Formally, ∀κ > 0 small enough, ∀α ≥ 10κ2 log2
1
κ , ∀I ⊂ [0, π/2] with |I| = 2O(n), ∃m ∈ N,

∃1 > β > η > 0 s.t. w.h.p. if∥∥Mi (τi )σi
∥∥
∞ ≤ κ

√
n, τi ∈ I, 1 ≤ i ≤ m

then ∃1 ≤ i < j ≤ m such that

n−1⟨σi , σj⟩ /∈ (β − η, β).

Ensemble m−OGP above κ2 log2
1
κ .

Nearly tight: almost matches algorithmic threshold κ2 (modulo log2
1
κ factor)

β ≫ η: m−tuple of equidistant points. Best rate with this approach.
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Problems with OGP and Algorithms Hardness Results

Random walk type algorithms for random k-SAT [COHH17].

Low-degree polynomials for random k-SAT [BH21].

Sequential local algorithms for NAE-k-SAT [GS17b].

Low-degree polynomials and Langevin dynamics [GJW20, Wei20].

AMP for optimizing p-spin model Hamiltonian [GJ21a].

Overlap concentrated algorithms 1 for mixed, even p−spin model Hamiltonian [HS21]

Low-depth circuits for even p−spin model Hamiltonian [GJW21].

OGP =⇒ FEW =⇒ Failure of MCMC: Principle submatrix problem [GJS19].

1Includes O(1) iteration of GD, AMP; and Langevin Dynamics run for O(1) time.
E. C. Kızıldağ (MIT) OGP in the SBP March 30, 2022 29 / 40



Stable Algorithms: Formal Definition

Algorithm A : RM×n → Bn (M = ⌊αn⌋ and α < αc(κ)). A(M) = σ ∈ Bn.

Potentially randomized.

Informal: A is stable if small change in M yields small change in A(M).

Semi-formally, A satisfies

Definition

(a) Success:

P
[∥∥MA

(
M

)∥∥
∞ ≤ κ

√
n
]
≥ 1− pf .

(b) Stability: ∃ρ ∈ (0, 1], M,M ∈ RM×n having N (0, 1) entries with Cov
(
Mij ,Mij

)
= ρ;

P
[
dH

(
A(M),A(M)

)
≤ f + L∥M−M∥F

]
≥ 1− pst.
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Stable Algorithms: Which Algorithms are Stable?

Stable algorithms include

Approximate message passing type algorithms [GJ21b, Gam21].

Low-degree polynomial based algorithms [GJW20].

Kim-Roche Algorithm for (Asymmetric) Perceptron [KR98].

S ′
α(0) ̸= ∅ (w.h.p.) when α < 0.005.

Proof is algorithmic: multi-stage majority.

Recently extended to SBP by Abbe, Li, and Sly [ALS21a].

Is multi-stage majority stable?
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Our Contributions: Kim-Roche Algorithm is Stable.

Let α < 0.005, M = ⌊nα⌋. M,M′ ∈ RM×n i.i.d. with i.i.d N (0, 1) entries; and

M(τ) = cos(τ)M+ sin(τ)M′ ∈ RM×n.

Theorem (Gamarnik, K., Perkins, and Xu, 2022+)

(Informal) Kim-Roche algorithm, AKR [KR98] is stable.
Set τ = n−0.02. Then,

P
[
dH

(
AKR(M),AKR(M(τ))

)
= o(n)

]
≥ 1− O

(
n−

1
41
)
.

Namely, AKR is stable with

pf = o
(
n−1

)
, pst = O

(
n−1/41

)
, ρ = cos

(
n−0.02

)
,

and any f = Θ(n), L > 0.
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Our Contributions: OGP implies Failure of Stable Algorithms

Theorem (Gamarnik, K., Perkins, and Xu, 2022+)

For α = Ω
(
κ2 log2

1
κ

)
, there is no stable A for SBP (with appropriate f , ρ, pf , pst).

Rule out pf , pst = O(1). No need for high-probability guarantee.

Proof Idea. By contradiction. Suppose ∃A.

m-OGP: a structure occurs with vanishing probability.
Run A on correlated instances. Show that w.p.> 0, forbidden structure occurs.

Proof based on Ramsey Theory [GK21].
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Our Contributions: Failure of Online Algorithms

Disorder M ∈ RM×n, columns Ci ∈ RM , 1 ≤ i ≤ n. A(M) = (σi : 1 ≤ i ≤ n) ∈ Bn.

Definition

A is online if ∃ft such that σt = ft(Ci : 1 ≤ i ≤ t) for 1 ≤ t ≤ n.

Online Algorithms: Bansal-Spencer [BS20].

Theorem (Gamarnik, K., Perkins, and Xu, 2022+)

∃ϵ > 0 such that for α ≥ αc(κ)− ϵ, there is no online A for SBP.

Proof Idea. By contradiction. A forbidden structure different than OGP.
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E. C. Kızıldağ (MIT) OGP in the SBP March 30, 2022 35 / 40



Main Contributions

Two Conundrums in SBP

A Statistical-to-Computational Gap: − 1
log2 κ

vs κ2.

Clustering coincides with efficient algorithms.

Landscape of SBP

High κ (κ = O(1)): Presence of 2−OGP and (Ensemble) 3−OGP, strictly below αc(κ).

Low κ (κ → 0): Presence of (Ensemble) m−OGP for α = Ω(κ2 log2
1
κ).

Algorithmic Results

Kim-Roche algorithm is stable.

Stable algorithms fail to find a solution if α = Ω(κ2 log2
1
κ).

Online algorithms fail to find a solution for sufficiently large densities.

Universality: Gaussianity of disorder M immaterial. Extends via Berry-Esseen
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Future Work

Some major challenges.

(Ensemble) Multi-OGP for κ = O(1).

Closing the gap, κ2 vs κ2 log2
1
κ .

- Rate κ2 log2
1
κ best possible with our approach.

- More delicate structure [BH21, HS21]?

Establishing stability of Bansal-Spencer algorithm [BS20].

True algorithmic threshold.
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A Conjecture: True Algorithmic Threshold

α∗
m(κ): smallest α < αc(κ) such that m−OGP holds (with proper 0 < η < β < 1). Set

αALG(κ) = lim
m→∞

α∗
m(κ).

Conjecture (Existence Threshold for Efficient Algorithms)

Let α > αALG(κ), M ∈ RM×n (M = ⌊nα⌋) with i.i.d.N (0, 1) entries. Then, no (randomized)
efficient algorithm A such that

P
[∥∥MA(M)

∥∥
∞ ≤ κ

√
n
]
≥ 1− o(1).
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Future Work: Bigger Challenges

What is the largest class of algorithms ruled out by OGP?

Naturally includes stable algorithms and MCMC.

Is there a problem with OGP yet admitting a polynomial-time algorithm?
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Thank you!
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binary perceptrons, Journal of Physics A: Mathematical and Theoretical 52 (2019),
no. 29, 294003.

Carlo Baldassi, Generalization learning in a perceptron with binary synapses, Journal of
Statistical Physics 136 (2009), no. 5, 902–916.

Carlo Baldassi and Alfredo Braunstein, A max-sum algorithm for training discrete neural
networks, Journal of Statistical Mechanics: Theory and Experiment 2015 (2015), no. 8,
P08008.

Matthew Brennan and Guy Bresler, Optimal average-case reductions to sparse pca: From
weak assumptions to strong hardness, arXiv preprint arXiv:1902.07380 (2019).
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