

A Curious Case of Symmetric Binary Perceptron Model: Algorithms and Barriers

Symmetric Binary Perceptron (SBP)

Setup: Fix $\kappa, \alpha > 0$, set $M = \lfloor n\alpha \rfloor \in \mathbb{N}$. Generate i.i.d. $X_i \stackrel{d}{=} \mathcal{N}(0, I_n), 1 \leq i \leq M$. Define $S_{\alpha}(\kappa) = \bigcap_{1 \le i \le M} \left\{ \sigma \in \mathcal{B}_n : |\langle \sigma, X_i \rangle| \le \kappa \sqrt{n} \right\} = \left\{ \sigma \in \mathcal{B}_n : \left\| \mathcal{M}\sigma \right\|_{\infty} \le \kappa \sqrt{n} \right\},$

where $\mathcal{B}_n = \{-1, 1\}^n$ and $\mathcal{M} \in \mathbb{R}^{M \times n}$ is the matrix of **disorder** with rows $X_1, \ldots, X_M \in \mathbb{R}^n$. Algorithmic Goal: Find a $\sigma \in S_{\alpha}(\kappa)$ in polynomial-time whenever $S_{\alpha}(\kappa) \neq \emptyset$ (whp).

Motivation

Neural Networks: Toy one-layer neural network (Wendel'62, Cover'65).

• Patterns $X_i \in \mathbb{R}^n$ to be **stored**.

• Storage: Find $\sigma \in \mathcal{B}_n$ "consistent" with X_i 's: $\langle \sigma, X_i \rangle \geq 0$.

Constraint Satisfaction Problems: X_i rules out certain $\sigma \in \mathcal{B}_n$. **Constraint Density:** $\alpha = M/n$. **Discrepancy Theory:** Given $\mathcal{M} \in \mathbb{R}^{M \times n}$, explore its discrepancy $\min_{\sigma \in \mathcal{B}_n} \|\mathcal{M}\sigma\|_{\infty}$.

Existential and Algorithmic Guarantees

Sharp Phase Transition. Let $\alpha_c(\kappa) = -1/\log_2 \mathbb{P}[|\mathcal{N}(0,1)| \le \kappa]$. Perkins-Xu'21, Abbe-Li-Sly'21:

 $S_{\alpha}(\kappa) \neq \emptyset$ (whp) if $\alpha < \alpha_c(\kappa)$. $S_{\alpha}(\kappa) = \emptyset$ (whp) if $\alpha > \alpha_c(\kappa)$.

Algorithmic (Polynomial-Time). Bansal-Spencer'20: for $\alpha = O(\kappa^2)$, outputs a $\sigma_{ALG} \in S_{\alpha}(\kappa)$ (whp).

A Statistical-to-Computational Gap

Gap between existential guarantee and the best polynomial-time algorithmic guarantee. Most pronounced for $\kappa \to 0$:

- $S_{\alpha}(\kappa) \neq \emptyset$ (whp) iff $\alpha < -1/\log_2 \kappa$. Algorithms exist for $\alpha = O(\kappa^2)$.
- A striking gap: $-1/\log_2 \kappa \, \text{vs} \, \kappa^2$.

Source of this gap/hardness?

Extreme Clustering and Freezing

Also known as Frozen 1-RSB in physics. For any $0 < \alpha < \alpha_c(\kappa)$:

- **Typical** solutions of **SBP** are isolated (whp). Distance to nearest solution is $\Theta(n)$.
- Suggests algorithmic hardness (Achlioptas & Coja-Oghlan'08).

A Conundrum: Extreme clustering/freezing coexist with polynomial-time algorithms.

Study of Statistical-to-Computational Gap

Common feature in many algorithmic problems in high-dimensional statistics & random combinatorial structures: Random k-SAT, optimization over random graphs, p-spin model, number partitioning... **Average-Case Problems:** No analogue of worst-case theory (such as $P \neq NP$).

Rigorous Evidences of Hardness: low-degree methods, reductions from the planted clique, failure of MCMC, failure of BP/AMP, SoS/SQ lower bounds,...

David Gamarnik¹ Eren C. Kızıldağ² Will Perkins³

¹MIT ORC

²MIT EECS & LIDS

³University of Illinois at Chicago

Overlap Gap Property (OGP)

Another approach from spin glass theory: Overlap Gap Property (OGP).

- Generic optimization problem with random instance ξ : $\min_{\sigma \in \Theta} \mathcal{L}(\sigma, \xi)$.
- (Informally) OGP for energy \mathcal{E} if $\exists 0 < \nu_1 < \nu_2$ s.t. w.h.p. over $\xi, \forall \sigma_1, \sigma_2 \in \Theta$,
 - $\mathcal{L}(\sigma_i, \xi) \leq \mathcal{E} \implies \text{distance}(\sigma_1, \sigma_2) < \nu_1 \quad \text{or} \quad \text{distance}(\sigma_1, \sigma_2) > \nu_2.$
- Any two **near optimal** σ_1, σ_2 are either too similar or too dissimilar.

First algorithmic implication: Finding maximum independent set in $\mathbb{G}_d(n)$. (Gamarnik-Sudan'13). **Problems with OGP:** Many, random k-SAT, p—spin model, number partitioning... **OGP as a Provable Barrier to Algorithms:** WALKSAT, local algorithms, stable algorithms, low-degree polynomials, approximate message passing (AMP), MCMC, low-depth circuits, QAOA...

Landscape Results: Presence of OGP

Consider i.i.d. $\mathcal{M}_i \in \mathbb{R}^{M \times n}$, $0 \le i \le m$, each with i.i.d. $\mathcal{N}(0, 1)$ entries. Interpolate: $\mathcal{M}_i(\tau) = \cos(\tau)\mathcal{M}_0 + \sin(\tau)\mathcal{M}_i, \in \mathbb{R}^{M \times n}, \quad \tau \in [0, \pi/2], \quad 1 \le i \le m.$

Fix $\kappa > 0$. SBP exhibits Ensemble m-OGP with $(m, \beta, \eta, \mathcal{I})$, if for any $\sigma_1, \ldots, \sigma_m \in \mathcal{B}_n$ with $\left\| \mathcal{M}_{i}(\tau_{i})\sigma_{i} \right\|_{\infty} \leq \kappa \sqrt{n}, \quad \tau_{i} \in \mathcal{I}, \quad 1 \leq i \leq m,$ there exists $1 \le i < j \le m$ such that $n^{-1} \langle \sigma_i, \sigma_j \rangle \notin (\beta - \eta, \beta)$. m-tuples: Hardness for broader range of parameters (i.e. lower threshold for α). **Ensemble:** Correlated instances. Rule out any sufficiently stable algorithm.

Small κ regime, $\kappa \to 0$: Statistical-to-Computational Gap is most pronounced. **Theorem.** $\forall \kappa > 0$ small and $\mathcal{I} \subset [0, \pi/2]$ with $|\mathcal{I}| \leq \exp(O(n))$, there exists $m \in \mathbb{N}$ and $1 > \beta > |$ $\eta > 0$ such that the **SBP** exhibits (whp) the Ensemble m-OGP with $(m, \beta, \eta, \mathcal{I})$ for $\alpha = \Omega(\kappa^2 \log \frac{1}{\kappa})$.

- Nearly **tight:** Matches algorithmic κ^2 threshold up to $\log \frac{1}{\kappa}$ factor.
- $\beta \gg \eta$: no equidistant *m*-tuples each satisfying constraint $\mathcal{M}_i(\tau_i), 1 \le i \le m$.

Large κ regime: Set $\kappa = 1$, $\alpha_c(\kappa) \approx 1.8158$. Thus $S_{\alpha}(\kappa) \neq \emptyset$ (whp) iff $\alpha < 1.8158$. **Theorem.** Let $\kappa = 1$. $\exists 0 < \beta_2, \beta_3, \eta_2, \eta_3 < 1$ (where $\beta_i > \eta_i$) such that the following holds whp: • SBP exhibits Ensemble 2–OGP with $(2, \beta_2, \eta_2, \mathcal{I})$ for $\alpha \geq 1.71$.

• SBP exhibits Ensemble 3–OGP with $(3, \beta_3, \eta_3, \mathcal{I})$ for $\alpha \geq 1.67$.

⁴Harvard CMSA

Changji Xu⁴

Algorithmic Hardness Results

Algorithm $\mathcal{A}: \mathbb{R}^{M \times n} \to \mathcal{B}_n$, potentially randomized. Success:

 $\mathbb{P} \| \mathcal{M}_{\mathcal{A}}$

Stability: $\exists \rho \in (0, 1]$ such that for i.i.d. $\mathcal{M}, \overline{\mathcal{M}} \in \mathbb{R}^{M \times n}$ with $Cov(\mathcal{M}_{ij}, \overline{\mathcal{M}}_{ij}) = \rho$ $\mathbb{P}\Big[d_H\Big(\mathcal{A}(\mathcal{M}),\mathcal{A}(\overline{\mathcal{A}})\Big)\Big]$

AMP and low-degree polynomials are stable (Gamarnik-Jagannath-Wein'20).

Question: "Are known efficient algorithms for perceptron models stable?"

Theorem. Kim-Roche algorithm (Kim-Roche'98) for the asymmetric perceptron is stable.

Theorem. Stable algorithms fail to find a solution for the SBP for $\alpha = \Omega(\kappa^2 \log \frac{1}{\kappa})$. Rule out $p_f, p_{st} = O(1)$. No need for high-probability guarantee. **Proof Idea.** By contradiction. Suppose $\exists A$.

- m-OGP: a structure occurs with vanishing probability.
- Uses Ramsey Theory (Gamarnik-Kızıldağ'21).

Failure of Online Algorithms for High Densities:

Columns of $\mathcal{M}: \mathcal{C}_1, \ldots, \mathcal{C}_n \in \mathbb{R}^M$. \mathcal{A} is **online** if $\exists f_t$ s.t. $\sigma_t = f_t(\mathcal{C}_i: 1 \le i \le t)$ for $1 \le t \le n$.

Theorem. $\exists \epsilon > 0$ such that for $\alpha \ge \alpha_c(\kappa) - \epsilon$, there is no **online** \mathcal{A} for SBP.

Future Directions

Algorithmic Threshold: Let $\alpha_m(\kappa)$ be the smallest density such that for some $0 < \eta < \beta < 1$, SBP exhibits (whp) Ensemble m-OGP with $(m, \beta, \eta, \{0\})$ for $\alpha \ge \alpha_m(\kappa)$. Define $\alpha_{\infty}^{*}(\kappa) \triangleq \lim_{m \to \infty} \alpha_{m}(\kappa).$

Conjecture. $\alpha^*_{\infty}(\kappa)$ marks the true algorithmic threshold of SBP.

- Bansal-Spencer algorithm is likely optimal (up to logaritmic factors).

Asymmetric Perceptron: Many open problems.

- Rigorously verifying Frozen 1-RSB picture.
- OGP and failure of stable algorithms.

More Enthusiastic Questions on OGP.

- **Counterexample to OGP:** Is there a model where efficient algorithms coexist with OGP?

Stable Algorithms. Informally, \mathcal{A} is stable if small change in X yields small change in $\mathcal{A}(X)$.

$$\mathcal{A}(\mathcal{M}) \big\|_{\infty} \le \kappa \sqrt{n} \Big] \ge 1 - p_f.$$

$$\overline{\mathcal{M}}$$
) $\leq f + L \| \mathcal{M} - \overline{\mathcal{M}} \|_F | \geq 1 - p_{\mathrm{st}}$

$m-OGP \implies$ Failure of Stable Algorithms.

• Run \mathcal{A} on correlated instances. Show that w.p. > 0, forbidden structure occurs.

• $\log \frac{1}{\kappa}$ factor? More delicate structure (Wein'20, Bresler-Huang'21, Huang-Sellke'21).

Stability of Other Algorithms: "Is Bansal-Spencer algorithm stable? Other discrepancy algorithms?"

Existence/Location of sharp phase transition point. Krauth-Mézard (89) prediction.

Largest class of algorithms ruled out by OGP: Includes stable algorithms, MCMC, etc.