MGH/HST Athinoula A. Martinos Center for Biomedical Imaging







## Improved spiral chemical shift imaging at 3 Tesla using a 32-channel integrated RF-shim coil array

Eren C. Kizildag<sup>1</sup>, Jason P. Stockmann<sup>2</sup>, Borjan Gagoski<sup>2,3,4</sup>, Eva-Maria Ratai<sup>2</sup>, Bastien Guerin<sup>2,4</sup>, P. Ellen Grant<sup>2,3,4</sup>, Lawrence L. Wald<sup>2,4</sup>, Elfar Adalsteinsson<sup>1,2</sup>

<sup>1</sup> Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA <sup>2</sup>A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA <sup>3</sup>Boston Children's Hospital, Boston, MA, USA <sup>4</sup>Harvard Medical School, Boston, MA, USA



# & Exhibition • 07–13 May 2016 SMRT 25<sup>th</sup> Annual Meeting • 07–08 May

## **Declaration of Financial Interests or Relationships**

Speaker Name: Eren Kizildag

I have no financial interests or relationships to disclose with regard to the subject matter of this presentation.

#### Motivation :

- Chemical shift imaging and shimming
- Multi-coil shim array

### Experimental methods

- Phantom
- Shimming
- Acquisition

Results

![](_page_2_Picture_9.jpeg)

![](_page_2_Picture_10.jpeg)

Shim Array

![](_page_2_Picture_11.jpeg)

2<sup>nd</sup> Order

#### Motivation :

- Chemical shift imaging and shimming
- Multi-coil shim array

### Experimental methods

- Phantom
- Shimming
- Acquisition

Results

![](_page_3_Picture_8.jpeg)

![](_page_3_Picture_9.jpeg)

![](_page_3_Picture_10.jpeg)

![](_page_3_Picture_11.jpeg)

#### **Motivation : Chemical Shift Imaging**

- In vivo chemical shift imaging (CSI)
  - Enables to study brain metabolites
- **Good** B<sub>0</sub> shimming is critical
  - Linewidth
  - Chemical shift
  - Water and lipid suppression

![](_page_4_Figure_7.jpeg)

#### **Anatomical Reference**

![](_page_4_Picture_9.jpeg)

![](_page_4_Picture_10.jpeg)

### **Motivation : Shimming in Chemical Shift Imaging**

![](_page_5_Picture_1.jpeg)

Hetherington et al., MRM (2006)

![](_page_5_Picture_3.jpeg)

### **Motivation : Multi-coil (MC) Shim Array**

- Drawbacks of higher-order spherical harmonics
- → Pan JW, MRM 68:1007–1017 (2012)
  - ✤ High inductance
  - Eddy currents in cryostat; need pre-emphasis for dynamic shimming
  - Lower efficiency at higher orders
  - Expensive shim current drivers
- Multi-coil shim arrays
- → Juchem C, JMR 212:280–288 (2011)
  - ✤ Low inductance
  - More efficient at generating higher-order fields
  - Low-cost shim current supplies
  - Little coupling to cryostat or gradient coils; no need for pre-emphasis

![](_page_6_Picture_13.jpeg)

Source: Resonance Research, Inc. http://www.rricorp.com

![](_page_6_Picture_15.jpeg)

Source: Juchem C, JMR 2011

rle IIII

#### **Integrated Multi-coil (MC) Shim Array**

![](_page_7_Picture_1.jpeg)

A 32-channel integrated RF-shim coil uses the same close-fitting array of loops for RF signal detection and B<sub>0</sub> shimming

#### Stockmann et al., MRM (2014)

- 32-channel, integrated RF-shim coil array
- Performances of both systems maintained

![](_page_7_Picture_6.jpeg)

Reduced geometric distortion in EPI scans (1mm in-plane, 1.11ms echo spacing, GRAPPA R=1)

![](_page_7_Picture_8.jpeg)

#### Motivation :

- Chemical shift imaging and shimming
- Multi-coil shim array

### Experimental details

- Phantom
- Shimming
- Acquisition

Results

![](_page_8_Picture_9.jpeg)

![](_page_8_Picture_10.jpeg)

![](_page_8_Picture_11.jpeg)

![](_page_8_Picture_12.jpeg)

#### **Experimental Details : Phantom**

- **Realistic head phantom** 
  - $\rightarrow$  Guerin et al., MRM 2015
  - Brain compartment filled with 'Braino' solution
    - ≻NAA
    - ≻Cr
    - ≻Cho
    - ≻Glutamate
    - ≻GABA
    - ≻Myo-inocitol
  - ♦ 5x typical in vivo concentration
  - ♦ Realistic  $\Delta B_0$  patterns observed in frontal lobes in vivo
    - 3D models available at <u>phantoms.martinos.org</u>

![](_page_9_Picture_13.jpeg)

**Phantom :** 3D-printed, antropomorphic head phantom

![](_page_9_Figure_15.jpeg)

**GRE experiment :** axial B<sub>0</sub> field map, indicates indeed realistic frontal lobe B<sub>0</sub> profile

![](_page_9_Picture_17.jpeg)

#### Motivation :

- Chemical shift imaging and shimming
- Multi-coil shim array

### Experimental details

- Phantom
- Shimming
- Acquisition

Results

![](_page_10_Picture_9.jpeg)

![](_page_10_Picture_10.jpeg)

![](_page_10_Picture_11.jpeg)

![](_page_10_Picture_12.jpeg)

11 E Kizildag, Improved spiral chemical shift imaging at 3 Tesla using a 32-channel integrated RF-shim coil array – ISMRM, Singapore – May 10, 2016

#### **Experimental Details : Shimming**

Optimal currents computed by solving

$$min_{x}\left\|B_{0}-Ax\right\|_{2}^{2}$$

$$s.t |x_i| \leq I_{max,loop}$$

Baseline profileBasis set, corresponding to 1A/coil

- $I_{max,loop}$ : Maximum current per loop (2.5A)
- $I_{max,loop}$ : Total current in the array (35A)
  - : Unknown currents to be solved

![](_page_11_Figure_8.jpeg)

![](_page_11_Figure_9.jpeg)

rle IIIT

12 E Kizildag, Improved spiral chemical shift imaging at 3 Tesla using a 32-channel integrated RF-shim coil array – ISMRM, Singapore – May 10, 2016

**B**<sub>0</sub>

A

X

### Motivation :

- Chemical shift imaging and shimming
- Multi-coil shim array

### Experimental details

- Phantom
- Shimming
- Acquisition
  - ✓ Conventional Cartesian CSI

### Results

Conventional Cartesian CSI

![](_page_12_Picture_11.jpeg)

![](_page_12_Picture_12.jpeg)

![](_page_12_Picture_13.jpeg)

![](_page_12_Picture_14.jpeg)

13 E Kizildag, Improved spiral chemical shift imaging at 3 Tesla using a 32-channel integrated RF-shim coil array – ISMRM, Singapore – May 10, 2016

#### **Acquisition – Cartesian CSI**

#### Details (CSI Acquisition)

- TR/TE: 1400ms/144ms
- **♦ TA** : 03:30
- ♦ Voxel : [12.5x12.5x12]mm (2cc)
- ♦ VOI : [80x80]mm

#### Acquisition Parameters (GRE):

#### Resolution:

>In-plane : 2.4mm ([240x240]mm over 100x100 matrix size)

Slice : 2mm

Duration : ~2 minutes

1 IMA 1

Spatially encoded volume.

LASER-excited volume

![](_page_13_Picture_13.jpeg)

ווחהה ההההה הההה

### Motivation :

- Chemical shift imaging and shimming
- Multi-coil shim array

### **Experimental details**

- Phantom
- Shimming
- Acquisition
  - ✓ Conventional Cartesian CSI

### 🗋 Results

#### Conventional Cartesian CSI

![](_page_14_Picture_11.jpeg)

![](_page_14_Picture_12.jpeg)

![](_page_14_Picture_13.jpeg)

![](_page_14_Picture_14.jpeg)

### **Methodology – Performance Metrics**

- Quantification metrics :
  - Spectral quality
    - **≻FWHM**
  - Extracted from scanner
  - Shim quality
    - ≻ Field maps, before and after
    - $> \sigma_{B_0}^{GLOBAL}$ 
      - >Standard deviation of field map, over whole VOI
    - $> \sigma_{B_0}^{LOCAL}$ 
      - >Standard deviation of field map within each CSI voxel

![](_page_15_Picture_11.jpeg)

#### **Results – Field Maps**

![](_page_16_Figure_1.jpeg)

![](_page_16_Picture_2.jpeg)

## Results – Field Maps – $\sigma BO^{GLOBAL}$ and $\sigma BO^{LOCAL}$

rle

![](_page_17_Figure_1.jpeg)

| mr.l   | ndmh     | $\mathbb{N}$ | $\mathbb{N}^{n}$ | [m]                                    | ~~~~  |
|--------|----------|--------------|------------------|----------------------------------------|-------|
| ul hul | aensha-f | M            | pul              | huh                                    |       |
| Mnl    | vulut    | unter        | ph.Mr.J          | mul                                    | p. m. |
| pont   | m.M.J.   |              | unders-          | n m                                    | Muh   |
| ~~^    | www.ul.a | uhallan      | sullent          | von fragen                             | M     |
| ~~~~   | ~rl      | wohen        | ~~M!             | ~~~^~~~_~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |       |

2<sup>nd</sup> Order

#### Shim Array

![](_page_18_Figure_4.jpeg)

Parameters :

- TR/TE: 1400ms/144ms
- ♦ TA : 03:30
- Voxel Size : 2cc
- 🔶 2D

![](_page_18_Picture_10.jpeg)

أبليليليليليليليليل

∎ 302

![](_page_19_Picture_1.jpeg)

![](_page_19_Picture_2.jpeg)

![](_page_20_Figure_1.jpeg)

![](_page_20_Figure_2.jpeg)

Parameters :

- TR/TE: 1400ms/144ms
- **♦ TA** :03:30
- Voxel Size : 2cc
- 💠 2D

![](_page_20_Figure_9.jpeg)

![](_page_20_Picture_10.jpeg)

![](_page_21_Figure_1.jpeg)

![](_page_21_Figure_2.jpeg)

Parameters :

- TR/TE: 1400ms/144ms
- **♦ TA** :03:30
- Voxel Size : 2cc
- 💠 2D

![](_page_21_Figure_9.jpeg)

![](_page_21_Picture_10.jpeg)

![](_page_22_Figure_1.jpeg)

![](_page_22_Figure_2.jpeg)

Parameters :

- TR/TE: 1400ms/144ms
- **♦ TA** :03:30
- Voxel Size : 2cc
- 💠 2D

![](_page_22_Figure_9.jpeg)

![](_page_22_Picture_10.jpeg)

![](_page_23_Figure_1.jpeg)

![](_page_23_Figure_2.jpeg)

Parameters :

- TR/TE: 1400ms/144ms
- **♦ TA** :03:30
- Voxel Size : 2cc
- 💠 2D

![](_page_23_Figure_9.jpeg)

![](_page_23_Picture_10.jpeg)

![](_page_24_Figure_1.jpeg)

![](_page_24_Figure_2.jpeg)

Parameters :

- TR/TE: 1400ms/144ms
- **♦ TA** :03:30
- Voxel Size : 2cc
- 💠 2D

![](_page_24_Figure_9.jpeg)

![](_page_24_Picture_10.jpeg)

#### **Results**

Improved spectral quality as judged by linewidths via MC shimming

✤ 27% average linewidth narrowing

Better water saturation via MC shimming

 $\Box$  Reduction in  $\sigma B_0^{GLOBAL}$  as seen in field maps

- ✤ 50% in overall CSI slab
- Similar improvements per CSI slice

Good agreement between predicted and acquired field maps

![](_page_25_Picture_8.jpeg)

#### **Acknowledgements and Related Talks**

We thank Trina Kok (

- □ Jon Polimeni ( ) for sharing his image acquisition and analysis scripts.
- □ This works is supported under
  - NIH R21 EB017338
  - P41 EB015896
  - BRP NIH R01EB017337

#### **Related Talks:**

- **#1010** R. Umesh Multi-Dimensional Reduced Field-Of-View Excitation by Integrated RF Pulse and DYNAMITE BO Field Design
- **#1151** W. Mattar Multi-Coil BO Shimming of the Human Heart: A Theoretical Assessment
- **#1152** I. Zivkovic B0 Shimming at 9.4T Using a Multicoil Approach Coil Design with Genetic Algorithm

NIBIB

- □ **#1153** J. Stockmann Improving the Efficiency of Integrated RF-Shim Arrays Using Hybrid Coil Designs and Channel Placement and Compression Via a Genetic Algorithm
- **#1154** G. Germain Optimization of Geometry for Combined RF/shim Coil Arrays for the Spinal Cord
- #1157 N. Arango Open-Source, Low-Cost, Flexible, Current Feedback-Controlled Driver Circuit for Local B0 Shim Coils and Other Applications
- **#2198** M. Jayatilake STEREO-MC for Connected Spatiotemporal Excitation

![](_page_26_Picture_15.jpeg)