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Motivation

NN models achieved great practical success:

Image recognition [HZRS16], image classification [KSH12], speech recognition [MDH11],
natural language processing [CW08], game playing [SSS+17],. . .

Overparameterization & Generalization:

# Parameters � # Training Data.

Conventional wisdom: Overfit, poor generalization.

Exact opposite for NN models: [ZBH+16, BHMM19, ADH+19]...

Why?
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Overparameterization & Generalization: Prior Work

Standard VC Theory does not help: [HLM17, BHLM19].

Algorithm-independent front:

Norms of weights [NTS15, BFT17, LPRS17, GRS17, DR17, WZ+17], PAC-Bayes
theory [NBS17, NBMS17], compression-based bounds [AGNZ18],. . .

Drawback: Mainly a posteriori. Need training to complete.

A priori guarantees: Algorithm-dependent front (soon).
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Overparameterization & Generalization: Prior Work

Self-Regularization.

Many parameter choices (near) perfectly interpolating data.

Algorithms “prefer” regularized solutions: e.g., small norm.

Algorithm-specific front: analyze end results.

Gradient Descent [BG17, FCG19], Stochastic Gradient
Descent [HRS16, LL18, AZLS19, CG19], Langevin dynamics [MWZZ18],....

Our Work.

Algorithm-independent route.
Well-controlled norm, under a certain non-negativity assumption.
Good generalization, through fat-shattering dimension.
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Setup and Main Assumption

Two-layer NN (a,W ) ∈ Rm × Rm×d . j th row of W , wj ∈ Rd .

Width m & activation σ(·).

For X ∈ Rd computes ∑
1≤j≤m

ajσ
(
wT
j X
)
, σ ∈ {ReLU, SGM, Step}.

Output weights, a = (aj : 1 ≤ j ≤ m). Outer norm: ‖a‖1.

Assumption (Non-Negativity)

aj ≥ 0 for j ∈ [m] , {1, 2, . . . ,m}.
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Non-Negativity Assumption

Non-negativity of aj :

Employed often in literature

[GLM17, DKKZ20, LMZ20, DL18, SS18, ZYWG19, GKM18],. . .

Inherent to real data (e.g. audio, muscular activity) [SV17].

Related to non-negative matrix factorization (NMF).

Non-Negative Matrix Factorization

Given: Non-negative M ∈ Rn×m and an r ∈ N.
Goal: Find non-negative A ∈ Rn×r , W ∈ Rr×m s.t. ‖M − AW ‖ small.

Many applications of NMF:

Info retrieval, document clustering, segmentation, demography, chemometrics,. . . [AGKM16].
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Setup and Distributional Assumptions

Given training data (Xi ,Yi ) ∈ Rd × R, 1 ≤ i ≤ N, find a NN with small training error:

L̂ (a,W ) ,
1

N

∑
1≤i≤N

Yi −
∑

1≤j≤m
ajσ(wT

j Xi )

2

.

Run any training algorithm (e.g. GD, SGD, MD).

Assumption (Distributional)

Input/label (Xi ,Yi ) ∈ Rd × R, 1 ≤ i ≤ N, i.i.d.

Input: ∃C > 0, P(‖X‖22 ≤ Cd) ≥ 1− exp(−Θ(d)).

Label: E[|Y |] , M <∞.

X need not have independent coordinates. Real data have bounded labels [DLL+18].
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Self-Regularity: ReLU Networks

Activation: ReLU(x) = max{x , 0} = (x + |x |)/2.

Positive homogenenous: ∀c ≥ 0, ReLU(cx) = cReLU(x). WLOG, ‖wj‖2 = 1.

Data (Xi ,Yi ), 1 ≤ i ≤ N, i.i.d. with

inf
w :‖w‖2=1

E[ReLU(wTX )] ≥ µ∗ and E[|Y |] = M <∞.

Fix δ > 0 and m ∈ N. Set,

G (m, δ) ,
{

(a,W ) ∈ Rm
≥0 × Rm×d : ‖wj‖2 = 1, 1 ≤ j ≤ m; L̂ (a,W ) ≤ δ2

}
.

G (m, δ): two-layer ReLU NN. Width m & training error δ2.

Set G(δ) ,
⋃

m∈N G (m, δ).
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Self-Regularity: ReLU Networks

Theorem (Gamarnik, K., and Zadik, 2021)

We have
sup

(a,W )∈G(δ)
‖a‖1 ≤ 4(δ + 2M)(µ∗)−1.

with probability at least 1−
(

12
√
Cd/µ∗

)d
exp (−Θ(N))− N exp (−Θ(d))− oN(1).

Suffices to have near-linear N: N = Θ(d log d).

For any ReLU NN with small L̂ (a,W ) (and aj ≥ 0), ‖a‖1 = O(1).

Oblivious to training algorithm.

Oblivious to width m. Assume teacher/student setting:

- Data (Xi ,Yi ) generated by a teacher NN.

- Any student NN (potentially overparameterized) has ‖a‖1 = O(1), provided L̂(·) is small.
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Self-Regularity: Technical Remarks

Probability term oN(1). Can be made explicit.

O(1/N): If E[Y 2] <∞
exp(−Θ(N)): If Yi , 1 ≤ i ≤ N satisfies large deviations estimates.

Dropped altogether, if |Y | ≤ M almost surely.

µ∗ term:
inf

w :‖w‖2=1
E[ReLU(wTX )] ≥ µ∗.

Suppose X
d
= N (0, Id). Suffices to take µ∗ = 1/

√
2π.

D. Gamarnik, E.C. Kızıldağ, I. Zadik (MIT, NYU) Self-Regularity of Output Weights July 2021 12 / 21



Self-Regularity: Sigmoid and Step Networks

Activations: SGM(x) = 1/(1 + exp(−x)) and Step(x) = 1{x ≥ 0}.
Let δ,R > 0 and m ∈ N.

For σ = SGM(x), define

S (m, δ,R) =

{
(a,W ) ∈ Rm

≥0 × Rm×d : max
1≤j≤m

‖wj‖2 ≤ R, L̂ (a,W ) ≤ δ2
}
.

For σ = Step(x), define

H (m, δ) =
{

(a,W ) ∈ Rm
≥0 × Rm×d : ‖wj‖2 = 1, 1 ≤ j ≤ m; L̂ (a,W ) ≤ δ2

}
.

Set
S(δ,R) =

⋃
m∈N
S (m, δ,R) and H(δ) =

⋃
m∈N
H(m, δ).
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Self-Regularity: Sigmoid and Step Networks

Theorem (Gamarnik, K., and Zadik, 2021)

With high probability, we have

sup
(a,W )∈S(δ,R)

‖a‖1 ≤ 3(1 + e)(δ + 2M) and sup
(a,W )∈H(δ)

‖a‖1 ≤ 2(δ + 2M)η−1.

Same remarks apply. Additionally,

SGM is not homogeneous: Control parameter R, maxj ‖wj‖2 ≤ R.

‖a‖1 = O(1), even when R = exp(Poly(d)) (if N = poly(d)).

For X
d
= N (0, Id), η = 0.3 suffices.

Other activations: Softplus (ln(1 + ex)), Gaussian (exp(−x2)), . . . .
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Generalization Guarantees: Fat-Shattering Dimension

So far: Small L̂ =⇒ Controlled ‖a‖1 (if ai ≥ 0 & N = Poly(d)).

Prior Work [BLW96, Bar98]: Controlled ‖a‖1 =⇒ Good generalization.

Through fat-shattering dimension (FSD) [KS94]

A (scale-sensitive) measure of complexity (of model class).
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Generalization Guarantees: Fat-Shattering Dimension

Theorem (Bartlett, 1998 [Bar98])

Let M > 0; σ : R→ [−M/2,M/2] be non-decreasing. Define sets:

F ,
{
X 7→ σ(wTX + w0) : w ∈ Rd ,w0 ∈ R

}
,

H(A) ,
{ m∑
j=1

aj fj : m ∈ N, fj ∈ F , ‖a‖1 ≤ A
}

where A ≥ 1. Then for γ ≤MA,

FSDH(A)(γ) ≤ Õ(M2A2d/γ2).

H(A): two-layer NN with outer norm at most A.

∴ Two-layer NN with bounded ‖a‖1 has “low complexity”.

D. Gamarnik, E.C. Kızıldağ, I. Zadik (MIT, NYU) Self-Regularity of Output Weights July 2021 16 / 21



Learning Setting

Data: D on Rd × R. (Xi ,Yi ) ∼ D, 1 ≤ i ≤ N i.i.d.

Bounded Yi : |Yi | ≤ M almost surely.

Focus: Any (a,W ) ∈ Rm
≥0 × Rm×d with small L̂ (·, ·):

L̂ (a,W ) ,
1

N

∑
1≤i≤N

Yi −
∑

1≤j≤m
ajσ(wT

j Xi )

2

≤ δ2.

Use “learned” (a,W ) to predict unseen data. Quantified by Generalization Error:

L(a,W ) , E(X ,Y )∼D

Y −
∑

1≤j≤m
ajσ(wT

j X )

2 .
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Generalization Guarantee: Main Result

S (δ): placeholder for S(δ,R) (SGM case), G(δ) (ReLU case), and H(δ) (Step case).

α: controls generalization gap |L̂ (a,W )− L(a,W )|.

Theorem (Gamarnik, K., and Zadik, 2021)

Let N = Poly(d , α−1). Then, with high probability over (Xi ,Yi ), 1 ≤ i ≤ N,

sup
(a,W )∈S (δ)

L(a,W ) ≤ α + δ2.

Shown by combining our outer norm bounds + [Hau92, BLW96, ABDCBH97, Bar98].

Complication for ReLU: unbounded output. Consider saturated version.

S-ReLU(x) = ReLU(x) for x ≤ 1; and S-ReLU(x) = 1 for x > 1.
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Main Contributions

Two-layer NN with ReLU, SGM, and Step activations.

Assume aj ≥ 0.

Self-Regularity:

‖a‖1 = O(1) w.h.p. for any (a,W ) achieving small L̂(·) (on N = poly(d) data).

Independent of width and training algorithm.

Mild data assumption. Elementary proof: ε−net argument.

Generalization:

Small L̂ (·, ·) =⇒ ‖a‖1 = O(1) =⇒ Good Generalization.
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Future Work

Different activations.

Non-negativity necessary?: Yes, strictly speaking.

- Teacher network, m∗ neurons.
- Student network m ≥ m∗ neurons.
- Introduce “sign cancellations”.
- Zero training error, but unbounded outer norm.

Deeper networks?
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Thank you!
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