Computing the Partition Function of the Sherrington-Kirkpatrick Model is Hard on Average

Eren C. Kızıldağ, joint work with David Gamarnik

MIT

2020 IEEE International Symposium on Information Theory

June, 2020

D. Gamarnik, E. C. Kızıldağ (MIT)

Average-Case Hardness of SK Model

June, 2020 1 / 22

Overview

Model and Algorithmic Problem

- Part I: Hardness under Finite Precision Arithmetic.
 - Cuts/Polarities
 - Truncation
 - Main Result
 - Proof Sketch
- ③ Part II: Hardness under Real-Valued Model.
 - Setup and Model
 - Main Result
- 4 Concluding Remarks
 - Extensions
 - Limitations and Open Problems

D. Gamarnik, E. C. Kızıldağ (MIT)

Average-Case Hardness of SK Model

・ロト・日本・日本・日本・日本・日本

June, 2020 3 / 22

• Algorithmic Problem. Computing *exactly* the partition function of the Sherrington-Kirkpatrick (SK) spin glass model with Gaussian couplings. The algorithmic hardness result.

- Algorithmic Problem. Computing *exactly* the partition function of the Sherrington-Kirkpatrick (SK) spin glass model with Gaussian couplings. The algorithmic hardness result.
- Model. Let $n \in \mathbb{Z}^+$, and $\mathbf{J} = (J_{ij} : 1 \le i < j \le n) \in \mathbb{R}^{n(n-1)/2}$, called *couplings*.

- Algorithmic Problem. Computing *exactly* the partition function of the Sherrington-Kirkpatrick (SK) spin glass model with Gaussian couplings. The algorithmic hardness result.
- Model. Let $n \in \mathbb{Z}^+$, and $\mathbf{J} = (J_{ij} : 1 \le i < j \le n) \in \mathbb{R}^{n(n-1)/2}$, called *couplings*.
- Consider *n* sites $[n] \triangleq \{1, 2, ..., n\}$, and assign a spin $\sigma_i \in \{\pm 1\}$ for each $i \in [n]$.

イロト 不得下 イヨト イヨト

- Algorithmic Problem. Computing *exactly* the partition function of the Sherrington-Kirkpatrick (SK) spin glass model with Gaussian couplings. The algorithmic hardness result.
- Model. Let $n \in \mathbb{Z}^+$, and $\mathbf{J} = (J_{ij} : 1 \le i < j \le n) \in \mathbb{R}^{n(n-1)/2}$, called *couplings*.
- Consider *n* sites $[n] \triangleq \{1, 2, ..., n\}$, and assign a spin $\sigma_i \in \{\pm 1\}$ for each $i \in [n]$.
- Energy of $\sigma = (\sigma_i : i \in [n]) \in \{\pm 1\}^n$ at *inverse temperature* $\beta > 0$ given by Hamiltonian

$$H(\boldsymbol{\sigma}) = \frac{\beta}{\sqrt{n}} \sum_{1 \leq i < j \leq n} J_{ij} \sigma_i \sigma_j.$$

イロト イヨト イヨト

- Algorithmic Problem. Computing *exactly* the partition function of the Sherrington-Kirkpatrick (SK) spin glass model with Gaussian couplings. The algorithmic hardness result.
- Model. Let $n \in \mathbb{Z}^+$, and $\mathbf{J} = (J_{ij} : 1 \le i < j \le n) \in \mathbb{R}^{n(n-1)/2}$, called *couplings*.
- Consider *n* sites $[n] \triangleq \{1, 2, ..., n\}$, and assign a spin $\sigma_i \in \{\pm 1\}$ for each $i \in [n]$.
- Energy of $\sigma = (\sigma_i : i \in [n]) \in \{\pm 1\}^n$ at *inverse temperature* $\beta > 0$ given by Hamiltonian

$$\mathcal{H}(\boldsymbol{\sigma}) = rac{eta}{\sqrt{n}} \sum_{1 \leq i < j \leq n} J_{ij} \sigma_i \sigma_j.$$

 \bullet An algorithm ${\cal A}$ to exactly compute the partition function

$$Z(\mathbf{J},eta) = \sum_{\boldsymbol{\sigma}\in\{\pm 1\}^n} \exp\left(-\mathcal{H}(\boldsymbol{\sigma})
ight).$$

June, 2020 3 / 22

イロト 不得下 イヨト イヨト

D. Gamarnik, E. C. Kızıldağ (MIT)

Average-Case Hardness of SK Model

・ロト・日本・モート ヨー うくの

June, 2020 4 / 22

• Problem of computing $Z(\mathbf{J})$ for arbitrary \mathbf{J} is #P-hard, Valiant [80s].

Image: A match a ma

- Problem of computing $Z(\mathbf{J})$ for arbitrary \mathbf{J} is #P-hard, Valiant [80s].
- Computing partition function for *arbitrary* input is hard for a broader class of statistical physics models: Barahona [82], Istrail [00], ...

- Problem of computing $Z(\mathbf{J})$ for arbitrary \mathbf{J} is #P-hard, Valiant [80s].
- Computing partition function for *arbitrary* input is hard for a broader class of statistical physics models: Barahona [82], Istrail [00], ...
- Requirement. For random J,

$$\mathbb{P}\left(Z_{\mathcal{A}}(\mathbf{J})=Z(\mathbf{J})\right)\geq\delta,$$

probability with respect to draw of J.

- Problem of computing $Z(\mathbf{J})$ for arbitrary \mathbf{J} is #P-hard, Valiant [80s].
- Computing partition function for *arbitrary* input is hard for a broader class of statistical physics models: Barahona [82], Istrail [00], ...
- Requirement. For random J,

$$\mathbb{P}\left(Z_{\mathcal{A}}(\mathbf{J})=Z(\mathbf{J})\right)\geq\delta,$$

probability with respect to draw of J.

• Thus, our goal is *average-case* hardness. Classical reduction techniques for *worst-case* hardness do not transfer.

- Problem of computing $Z(\mathbf{J})$ for arbitrary \mathbf{J} is #P-hard, Valiant [80s].
- Computing partition function for *arbitrary* input is hard for a broader class of statistical physics models: Barahona [82], Istrail [00], ...
- Requirement. For random J,

$$\mathbb{P}\left(Z_{\mathcal{A}}(\mathbf{J})=Z(\mathbf{J})\right)\geq\delta,$$

probability with respect to draw of **J**.

- Thus, our goal is *average-case* hardness. Classical reduction techniques for *worst-case* hardness do not transfer.
- Of interest in cryptography and TCS. Examples include shortest lattice vector problem (Ajtai [96]), and permanent (Lipton [89], Feige and Lund [92], Cai et al. [99]).

イロト 不得下 イヨト イヨト

Overview

Model and Algorithmic Problem

Part I: Hardness under Finite Precision Arithmetic.

- Cuts/Polarities
- Truncation
- Main Result
- Proof Sketch

3 Part II: Hardness under Real-Valued Model.

- Setup and Model
- Main Result
- 4 Concluding Remarks
 - Extensions
 - Limitations and Open Problems

D. Gamarnik, E. C. Kızıldağ (MIT)

Average-Case Hardness of SK Model

・ロト・西・・田・・田・ つくぐ

June, 2020

6/22

• A_i , $1 \le i \le n$, independent mean zero normal, called *external field*. Modified Hamiltonian:

$$H(\boldsymbol{\sigma}) = \frac{\beta}{\sqrt{n}} \sum_{1 \leq i < j \leq n} J_{ij}\sigma_i\sigma_j + \sum_{1 \leq i \leq n} A_i\sigma_i.$$

Corresponding partition function $Z_1(\mathbf{J}, \mathbf{A})$, where $\mathbf{A} = (A_i : 1 \le i \le n)$.

• A_i , $1 \le i \le n$, independent mean zero normal, called *external field*. Modified Hamiltonian:

$$H(\boldsymbol{\sigma}) = \frac{\beta}{\sqrt{n}} \sum_{1 \leq i < j \leq n} J_{ij}\sigma_i\sigma_j + \sum_{1 \leq i \leq n} A_i\sigma_i.$$

Corresponding partition function $Z_1(\mathbf{J}, \mathbf{A})$, where $\mathbf{A} = (A_i : 1 \le i \le n)$.

• We study alternative Hamiltonian

$$H(\boldsymbol{\sigma}) = \frac{\beta}{\sqrt{n}} \sum_{1 \leq i < j \leq n} J_{ij}\sigma_i\sigma_j + \sum_{1 \leq i \leq n} B_i\sigma_i - \sum_{1 \leq i \leq n} C_i\sigma_i.$$

 B_i , $1 \le i \le n$ and C_i , $1 \le i \le n$ independent, zero-mean; partition function $Z_2(\mathbf{J}, \mathbf{B}, \mathbf{C})$.

• A_i , $1 \le i \le n$, independent mean zero normal, called *external field*. Modified Hamiltonian:

$$H(\boldsymbol{\sigma}) = \frac{\beta}{\sqrt{n}} \sum_{1 \leq i < j \leq n} J_{ij}\sigma_i\sigma_j + \sum_{1 \leq i \leq n} A_i\sigma_i.$$

Corresponding partition function $Z_1(\mathbf{J}, \mathbf{A})$, where $\mathbf{A} = (A_i : 1 \le i \le n)$.

• We study alternative Hamiltonian

$$H(\boldsymbol{\sigma}) = \frac{\beta}{\sqrt{n}} \sum_{1 \leq i < j \leq n} J_{ij}\sigma_i\sigma_j + \sum_{1 \leq i \leq n} B_i\sigma_i - \sum_{1 \leq i \leq n} C_i\sigma_i.$$

B_i, 1 ≤ i ≤ n and C_i, 1 ≤ i ≤ n independent, zero-mean; partition function Z₂(J, B, C). • Equivalence: if A_1 with input (J, A) computes Z₁(J, A) then A_1 with input (J, B − C) computes Z₂(J, B, C). If A_2 with input (Z, B, C) computes Z₂(J, B, C) then A_2 with input (J, $\frac{G+A}{2}, \frac{G-A}{2}$) computes Z₁(J, A), where $G = (G_i : 1 \le i \le n)$ i.i.d. copy of A.

D. Gamarnik, E. C. Kızıldağ (MIT)

June, 2020 7 / 22

Image: A math a math

• Thus our focus is on computing partition function $Z(\mathbf{J}, \mathbf{B}, \mathbf{C})$ for Hamiltonian

$$H(\boldsymbol{\sigma}) = \frac{\beta}{\sqrt{n}} \sum_{1 \leq i < j \leq n} J_{ij} \sigma_i \sigma_j + \sum_{1 \leq i \leq n} B_i \sigma_i - \sum_{1 \leq i \leq n} C_i \sigma_i.$$

• Thus our focus is on computing partition function $Z(\mathbf{J}, \mathbf{B}, \mathbf{C})$ for Hamiltonian

$$H(\boldsymbol{\sigma}) = \frac{\beta}{\sqrt{n}} \sum_{1 \leq i < j \leq n} J_{ij}\sigma_i\sigma_j + \sum_{1 \leq i \leq n} B_i\sigma_i - \sum_{1 \leq i \leq n} C_i\sigma_i.$$

• Incorporate cuts and polarities induced by ${m \sigma} \in \{\pm 1\}^n$: set

$$\Sigma_{\sigma}^{+} \triangleq rac{eta}{\sqrt{n}} \sum_{\sigma_i = \sigma_j} J_{ij} + \sum_{\sigma_i = +1} B_i + \sum_{\sigma_i = -1} C_i \quad \text{and} \quad \Sigma_{\sigma}^{-} \triangleq rac{eta}{\sqrt{n}} \sum_{\sigma_i
eq \sigma_j} J_{ij} + \sum_{\sigma_i = -1} B_i + \sum_{\sigma_i = +1} C_i.$$

Note that $H(\sigma) = \Sigma_{\sigma}^{+} - \Sigma_{\sigma}^{-}$. Furthermore, $\Sigma \triangleq \Sigma_{\sigma}^{+} + \Sigma_{\sigma}^{-} = \sum_{i < j} J_{ij} + \sum_{i} (B_{i} + C_{i})$ independent of σ and polynomial-time computable.

June, 2020 7 / 22

• Thus our focus is on computing partition function $Z(\mathbf{J}, \mathbf{B}, \mathbf{C})$ for Hamiltonian

$$H(\boldsymbol{\sigma}) = \frac{\beta}{\sqrt{n}} \sum_{1 \leq i < j \leq n} J_{ij}\sigma_i\sigma_j + \sum_{1 \leq i \leq n} B_i\sigma_i - \sum_{1 \leq i \leq n} C_i\sigma_i.$$

• Incorporate cuts and polarities induced by $oldsymbol{\sigma} \in \{\pm 1\}^n$: set

$$\Sigma_{\sigma}^{+} \triangleq rac{eta}{\sqrt{n}} \sum_{\sigma_i = \sigma_j} J_{ij} + \sum_{\sigma_i = +1} B_i + \sum_{\sigma_i = -1} C_i \quad \text{and} \quad \Sigma_{\sigma}^{-} \triangleq rac{eta}{\sqrt{n}} \sum_{\sigma_i \neq \sigma_j} J_{ij} + \sum_{\sigma_i = -1} B_i + \sum_{\sigma_i = +1} C_i.$$

Note that $H(\sigma) = \Sigma_{\sigma}^{+} - \Sigma_{\sigma}^{-}$. Furthermore, $\Sigma \triangleq \Sigma_{\sigma}^{+} + \Sigma_{\sigma}^{-} = \sum_{i < j} J_{ij} + \sum_{i} (B_i + C_i)$ independent of σ and polynomial-time computable.

Thus Z(J, B, C) = Σ_{σ∈{±1}ⁿ} exp(−H(σ)) = Σ_{σ∈{±1}ⁿ} exp(−Σ) exp(2Σ_σ⁻) is computable iff Σ_{σ∈{±1}ⁿ} exp(2Σ_σ⁻) is computable. Ignore 2.

D. Gamarnik, E. C. Kızıldağ (MIT)

June, 2020 7 / 22

Part I. Hardness under Finite Precision Arithmetic. Truncation.

June, 2020 8 / 22

Image: A math a math

Part I. Hardness under Finite Precision Arithmetic. Truncation.

• Let
$$\widehat{J}_{ij} = \exp(\beta J_{ij}/\sqrt{n})$$
, $\widehat{B}_i = \exp(B_i)$, and $\widehat{C}_i = \exp(C_i)$.

Image: A math a math

Truncation

Part I. Hardness under Finite Precision Arithmetic. Truncation.

- Let $\widehat{J}_{ii} = \exp(\beta J_{ii}/\sqrt{n})$, $\widehat{B}_i = \exp(B_i)$, and $\widehat{C}_i = \exp(C_i)$.
- **Truncation:** Fix $N \in \mathbb{Z}_+$, let $x^{[N]} \triangleq 2^{-N} |2^N x|$. Truncate inputs: $\widehat{J}_{ii}^{[N]}, \widehat{B}_i^{[N]}$, and $\widehat{C}_i^{[N]}$. Goal is to compute

$$Z(\widehat{\mathbf{J}}^{[\mathbf{N}]}, \widehat{\mathbf{B}}^{[\mathbf{N}]}, \widehat{\mathbf{C}}^{[\mathbf{N}]}) = \sum_{\boldsymbol{\sigma} \in \{-1,1\}^n} \left(\prod_{\sigma_i \neq \sigma_j} \widehat{J}_{ij}^{[N]} \right) \left(\prod_{\sigma_i = -1} \widehat{B}_i^{[N]} \right) \left(\prod_{\sigma_i = +1} \widehat{C}_i^{[N]} \right).$$

Truncation

Part I. Hardness under Finite Precision Arithmetic. Truncation.

- Let $\widehat{J}_{ii} = \exp(\beta J_{ii}/\sqrt{n})$, $\widehat{B}_i = \exp(B_i)$, and $\widehat{C}_i = \exp(C_i)$.
- **Truncation:** Fix $N \in \mathbb{Z}_+$, let $x^{[N]} \triangleq 2^{-N} | 2^N x |$. Truncate inputs: $\widehat{J}_{ii}^{[N]}, \widehat{B}_i^{[N]}$, and $\widehat{C}_i^{[N]}$. Goal is to compute

$$Z(\widehat{\mathbf{J}}^{[\mathbf{N}]}, \widehat{\mathbf{B}}^{[\mathbf{N}]}, \widehat{\mathbf{C}}^{[\mathbf{N}]}) = \sum_{\boldsymbol{\sigma} \in \{-1,1\}^n} \left(\prod_{\sigma_i \neq \sigma_j} \widehat{J}_{ij}^{[N]} \right) \left(\prod_{\sigma_i = -1} \widehat{B}_i^{[N]} \right) \left(\prod_{\sigma_i = +1} \widehat{C}_i^{[N]} \right).$$

• Switching to Integer Inputs: Define $\widetilde{J}_{ij} \triangleq 2^N \widehat{J}_{ii}^{[N]} \in \mathbb{Z}$, and $\widetilde{B}_i, \widetilde{C}_i$ similarly. Focus:

$$Z_n(\widetilde{\mathbf{J}},\widetilde{\mathbf{B}},\widetilde{\mathbf{C}}) = \sum_{\boldsymbol{\sigma} \in \{-1,1\}^n} 2^{Nf(n,\boldsymbol{\sigma})} \left(\prod_{\sigma_i \neq \sigma_j} \widetilde{J}_{ij}\right) \left(\prod_{\sigma_i = -1} \widetilde{B}_i\right) \left(\prod_{\sigma_i = +1} \widetilde{C}_i\right),$$

where $f(n, \sigma) = n(n-1)/2 - n - |\{(i, j) : 1 \le i \le j \le n, \sigma_i \ne \sigma_i\}|$.

Part I. Hardness under Finite Precision Arithmetic. Truncation.

- Let $\widehat{J}_{ij} = \exp(\beta J_{ij}/\sqrt{n})$, $\widehat{B}_i = \exp(B_i)$, and $\widehat{C}_i = \exp(C_i)$.
- Truncation: Fix N ∈ Z₊, let x^[N] ≜ 2^{-N} [2^Nx]. Truncate inputs: Ĵ_{ij}^[N], B̂_i^[N], and Ĉ_i^[N]. Goal is to compute

$$Z(\widehat{\mathbf{J}}^{[\mathbf{N}]}, \widehat{\mathbf{B}}^{[\mathbf{N}]}, \widehat{\mathbf{C}}^{[\mathbf{N}]}) = \sum_{\boldsymbol{\sigma} \in \{-1,1\}^n} \left(\prod_{\sigma_i \neq \sigma_j} \widehat{J}_{ij}^{[N]} \right) \left(\prod_{\sigma_i = -1} \widehat{B}_i^{[N]} \right) \left(\prod_{\sigma_i = +1} \widehat{C}_i^{[N]} \right).$$

• Switching to Integer Inputs: Define $\widetilde{J}_{ij} \triangleq 2^N \widehat{J}_{ij}^{[N]} \in \mathbb{Z}$, and $\widetilde{B}_i, \widetilde{C}_i$ similarly. Focus:

$$Z_n(\widetilde{\mathbf{J}},\widetilde{\mathbf{B}},\widetilde{\mathbf{C}}) = \sum_{\boldsymbol{\sigma} \in \{-1,1\}^n} 2^{Nf(n,\boldsymbol{\sigma})} \left(\prod_{\sigma_i \neq \sigma_j} \widetilde{J}_{ij}\right) \left(\prod_{\sigma_i = -1} \widetilde{B}_i\right) \left(\prod_{\sigma_i = +1} \widetilde{C}_i\right),$$

where $f(n, \sigma) = n(n-1)/2 - n - |\{(i,j) : 1 \le i < j \le n, \sigma_i \ne \sigma_j\}|.$ • Observe that $Z_n(\widetilde{\mathbf{J}}, \widetilde{\mathbf{B}}, \widetilde{\mathbf{C}}) = 2^{Nn(n-1)/2} Z(\widehat{\mathbf{J}}^{[\mathbf{N}]}, \widehat{\mathbf{B}}^{[\mathbf{N}]}, \widehat{\mathbf{C}}^{[\mathbf{N}]}) \in \mathbb{Z}.$

D. Gamarnik, E. C. Kızıldağ (MIT)

D. Gamarnik, E. C. Kızıldağ (MIT)

Average-Case Hardness of SK Model

イロト イヨト イヨト イヨ

June, 2020

9/22

Theorem (Gamarnik & K., 2019)

Let $k, \alpha, \epsilon > 0$ be arbitrary constants. Suppose that the precision value N satisfies $(3\alpha + 21k/2 + 10 + \epsilon) \log n \le N \le n^{\alpha}$, and that there exists a polynomial-in-n time algorithm \mathcal{A} , which, on input $(\widetilde{J}, \widetilde{B}, \widetilde{C})$ produces a value $Z_{\mathcal{A}}(\widetilde{J}, \widetilde{B}, \widetilde{C})$ such that $\mathbb{P}\left(Z_{\mathcal{A}}(\widetilde{J}, \widetilde{B}, \widetilde{C}) = Z_n(\widetilde{J}, \widetilde{B}, \widetilde{C})\right) \ge 1/n^k$ for all sufficiently large n. Then, P = #P.

Theorem (Gamarnik & K., 2019)

Let $k, \alpha, \epsilon > 0$ be arbitrary constants. Suppose that the precision value N satisfies $(3\alpha + 21k/2 + 10 + \epsilon) \log n \le N \le n^{\alpha}$, and that there exists a polynomial-in-n time algorithm \mathcal{A} , which, on input $(\widetilde{J}, \widetilde{B}, \widetilde{C})$ produces a value $Z_{\mathcal{A}}(\widetilde{J}, \widetilde{B}, \widetilde{C})$ such that $\mathbb{P}\left(Z_{\mathcal{A}}(\widetilde{J}, \widetilde{B}, \widetilde{C}) = Z_n(\widetilde{J}, \widetilde{B}, \widetilde{C})\right) \ge 1/n^k$ for all sufficiently large n. Then, P = #P.

Comments.

Theorem (Gamarnik & K., 2019)

Let $k, \alpha, \epsilon > 0$ be arbitrary constants. Suppose that the precision value N satisfies $(3\alpha + 21k/2 + 10 + \epsilon) \log n \le N \le n^{\alpha}$, and that there exists a polynomial-in-n time algorithm \mathcal{A} , which, on input $(\widetilde{J}, \widetilde{B}, \widetilde{C})$ produces a value $Z_{\mathcal{A}}(\widetilde{J}, \widetilde{B}, \widetilde{C})$ such that $\mathbb{P}\left(Z_{\mathcal{A}}(\widetilde{J}, \widetilde{B}, \widetilde{C}) = Z_n(\widetilde{J}, \widetilde{B}, \widetilde{C})\right) \ge 1/n^k$ for all sufficiently large n. Then, P = #P.

Comments.

• Probability taken with respect to randomness in $(\tilde{J}, \tilde{B}, \tilde{C})$, which originates from randomness in input (J, B, C).

Theorem (Gamarnik & K., 2019)

Let $k, \alpha, \epsilon > 0$ be arbitrary constants. Suppose that the precision value N satisfies $(3\alpha + 21k/2 + 10 + \epsilon) \log n \le N \le n^{\alpha}$, and that there exists a polynomial-in-n time algorithm \mathcal{A} , which, on input $(\widetilde{J}, \widetilde{B}, \widetilde{C})$ produces a value $Z_{\mathcal{A}}(\widetilde{J}, \widetilde{B}, \widetilde{C})$ such that $\mathbb{P}\left(Z_{\mathcal{A}}(\widetilde{J}, \widetilde{B}, \widetilde{C}) = Z_n(\widetilde{J}, \widetilde{B}, \widetilde{C})\right) \ge 1/n^k$ for all sufficiently large n. Then, P = #P.

Comments.

- Probability taken with respect to randomness in $(\widetilde{J}, \widetilde{B}, \widetilde{C})$, which originates from randomness in input (J, B, C).
- Number N of bits in precision is at least logarithmic and at most polynomial in n.

Theorem (Gamarnik & K., 2019)

Let $k, \alpha, \epsilon > 0$ be arbitrary constants. Suppose that the precision value N satisfies $(3\alpha + 21k/2 + 10 + \epsilon) \log n \le N \le n^{\alpha}$, and that there exists a polynomial-in-n time algorithm \mathcal{A} , which, on input $(\widetilde{J}, \widetilde{B}, \widetilde{C})$ produces a value $Z_{\mathcal{A}}(\widetilde{J}, \widetilde{B}, \widetilde{C})$ such that $\mathbb{P}\left(Z_{\mathcal{A}}(\widetilde{J}, \widetilde{B}, \widetilde{C}) = Z_n(\widetilde{J}, \widetilde{B}, \widetilde{C})\right) \ge 1/n^k$ for all sufficiently large n. Then, P = #P.

Comments.

- Probability taken with respect to randomness in $(\widetilde{J}, \widetilde{B}, \widetilde{C})$, which originates from randomness in input (J, B, C).
- Number N of bits in precision is at least logarithmic and at most polynomial in n.
- Upper bound ensures bit stream supplied to algorithm is of polynomial length.

ヘロト 人間ト ヘヨト ヘヨト

Theorem (Gamarnik & K., 2019)

Let $k, \alpha, \epsilon > 0$ be arbitrary constants. Suppose that the precision value N satisfies $(3\alpha + 21k/2 + 10 + \epsilon) \log n \le N \le n^{\alpha}$, and that there exists a polynomial-in-n time algorithm \mathcal{A} , which, on input $(\widetilde{J}, \widetilde{B}, \widetilde{C})$ produces a value $Z_{\mathcal{A}}(\widetilde{J}, \widetilde{B}, \widetilde{C})$ such that $\mathbb{P}\left(Z_{\mathcal{A}}(\widetilde{J}, \widetilde{B}, \widetilde{C}) = Z_n(\widetilde{J}, \widetilde{B}, \widetilde{C})\right) \ge 1/n^k$ for all sufficiently large n. Then, P = #P.

Comments.

- Probability taken with respect to randomness in $(\widetilde{J}, \widetilde{B}, \widetilde{C})$, which originates from randomness in input (J, B, C).
- Number N of bits in precision is at least logarithmic and at most polynomial in n.
- Upper bound ensures bit stream supplied to algorithm is of polynomial length.
- Lower bound required for technical reasons when establishing near-uniformity of $(\widetilde{J}, \widetilde{B}, \widetilde{C})$.

Idea of Proof.

D. Gamarnik, E. C. Kızıldağ (MIT)

イロト 不得 トイヨト イヨト
Idea of Proof.

Inspired from average-case hardness proof by Cai et al. [99] for computing permanent over a finite field. Recall that for an A ∈ ℝ^{m×m},

$$\operatorname{permanent}(A) = \sum_{\sigma \in S_n} \prod_{1 \le i \le n} a_{i,\sigma(i)},$$

where S_n is the set of all permutations of $\{1, 2, ..., n\}$. #P-hard to compute for *arbitrary inputs*.

Idea of Proof.

Inspired from average-case hardness proof by Cai et al. [99] for computing permanent over a finite field. Recall that for an A ∈ ℝ^{m×m},

$$\operatorname{permanent}(A) = \sum_{\sigma \in S_n} \prod_{1 \leq i \leq n} a_{i,\sigma(i)},$$

where S_n is the set of all permutations of $\{1, 2, ..., n\}$. #P-hard to compute for *arbitrary inputs*.

Let Z_p be a finite field. Permanent of a M ∈ Z^{n×n}_p equals to a weighted sum of permanents of n minors M₁₁,..., M_{n1} ∈ Z^{(n-1)×(n-1)}_p.

Idea of Proof.

Inspired from average-case hardness proof by Cai et al. [99] for computing permanent over a finite field. Recall that for an A ∈ ℝ^{m×m},

$$\operatorname{permanent}(A) = \sum_{\sigma \in S_n} \prod_{1 \leq i \leq n} a_{i,\sigma(i)},$$

where S_n is the set of all permutations of $\{1, 2, ..., n\}$. #P-hard to compute for *arbitrary inputs*.

- Let Z_p be a finite field. Permanent of a M ∈ Z^{n×n}_p equals to a weighted sum of permanents of n minors M₁₁,..., M_{n1} ∈ Z^{(n-1)×(n-1)}_p.
- Construct a matrix polynomial whose value at k ∈ {1, 2, ..., n} is minor M_{k1}. The permanent of this matrix polynomial is a low-degree univariate polynomial. Call it φ.

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・ ・ ヨ

D. Gamarnik, E. C. Kızıldağ (MIT)

Average-Case Hardness of SK Model

・ロマ・師・・師・・師・・日・ 2000

June, 2020

11 / 22

 Assume there exists a polynomial-time algorithm A to exactly compute permanent on a fraction of all inputs. Use A to generate a *list* of noisy samples of φ.

A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

- Assume there exists a polynomial-time algorithm \mathcal{A} to exactly compute permanent on a fraction of all inputs. Use \mathcal{A} to generate a *list* of noisy samples of φ .
- Reconstruct φ from its noisy samples: list decoding (Berlekamp-Welch [86], Sudan [96]).

- Assume there exists a polynomial-time algorithm \mathcal{A} to exactly compute permanent on a fraction of all inputs. Use \mathcal{A} to generate a *list* of noisy samples of φ .
- Reconstruct φ from its noisy samples: list decoding (Berlekamp-Welch [86], Sudan [96]).
- Thus, if A exists, permanent of an *arbitrary* A can be computed, implying P = #P.

- Assume there exists a polynomial-time algorithm \mathcal{A} to exactly compute permanent on a fraction of all inputs. Use \mathcal{A} to generate a *list* of noisy samples of φ .
- Reconstruct φ from its noisy samples: list decoding (Berlekamp-Welch [86], Sudan [96]).
- Thus, if A exists, permanent of an *arbitrary* A can be computed, implying P = #P.

Technical Challenges for the SK Model.

イロト 不得下 イヨト イヨト

- Assume there exists a polynomial-time algorithm \mathcal{A} to exactly compute permanent on a fraction of all inputs. Use \mathcal{A} to generate a *list* of noisy samples of φ .
- Reconstruct φ from its noisy samples: list decoding (Berlekamp-Welch [86], Sudan [96]).
- Thus, if A exists, permanent of an *arbitrary* A can be computed, implying P = #P.

Technical Challenges for the SK Model.

• Not clear if a Laplace-like self-recursion takes place for partition function.

4 E N

- Assume there exists a polynomial-time algorithm \mathcal{A} to exactly compute permanent on a fraction of all inputs. Use \mathcal{A} to generate a *list* of noisy samples of φ .
- Reconstruct φ from its noisy samples: list decoding (Berlekamp-Welch [86], Sudan [96]).
- Thus, if A exists, permanent of an *arbitrary* A can be computed, implying P = #P.

Technical Challenges for the SK Model.

- Not clear if a Laplace-like self-recursion takes place for partition function.
- Hardness results above address uniform input over \mathbb{Z}_p . We have truncated log-normals.

イロト イヨト イヨト

D. Gamarnik, E. C. Kızıldağ (MIT)

イロト 不得 トイヨト イヨト

For an *n*-spin system, $Z_n(\cdot)$ requires (integer) input, of size n(n-1)/2 + 2n. We follow an outline similar to Cai et al. [99] for permanent.

Image: A match a ma

For an *n*-spin system, $Z_n(\cdot)$ requires (integer) input, of size n(n-1)/2 + 2n. We follow an outline similar to Cai et al. [99] for permanent.

• Let $p_n > 9n^{2k+2}$ be a prime. For any $\Xi \in \mathbb{Z}^{n(n-1)/2+2n}$, let $Z_n(\Xi; p_n) \triangleq Z_n(\Xi) \pmod{p_n}$.

イロト 不得下 イヨト イヨト

For an *n*-spin system, $Z_n(\cdot)$ requires (integer) input, of size n(n-1)/2 + 2n. We follow an outline similar to Cai et al. [99] for permanent.

- Let $p_n > 9n^{2k+2}$ be a prime. For any $\Xi \in \mathbb{Z}^{n(n-1)/2+2n}$, let $Z_n(\Xi; p_n) \triangleq Z_n(\Xi) \pmod{p_n}$.
- Suppose $\mathbf{U} \in \mathbb{Z}_{p_n}^{n(n-1)/2+2n}$ generated uniformly at random.

For an *n*-spin system, $Z_n(\cdot)$ requires (integer) input, of size n(n-1)/2 + 2n. We follow an outline similar to Cai et al. [99] for permanent.

- Let $p_n > 9n^{2k+2}$ be a prime. For any $\Xi \in \mathbb{Z}^{n(n-1)/2+2n}$, let $Z_n(\Xi; p_n) \triangleq Z_n(\Xi) \pmod{p_n}$.
- Suppose $\mathbf{U} \in \mathbb{Z}_{p_n}^{n(n-1)/2+2n}$ generated uniformly at random.
- Claim. Computing $Z_n(\mathbf{U}; p_n)$ is hard on average by worst-case to average reduction: if there exists an algorithm \mathcal{A} enjoying

$$\mathbb{P}(Z_{\mathcal{A}}(\mathbf{U}; p_n) = Z_n(\mathbf{U}; p_n)) \geq n^{-k},$$

then P = #P. Based on worst-case hardness for arbitrary inputs.

・ロット (雪) (き) (き) (き)

For an *n*-spin system, $Z_n(\cdot)$ requires (integer) input, of size n(n-1)/2 + 2n. We follow an outline similar to Cai et al. [99] for permanent.

- Let $p_n > 9n^{2k+2}$ be a prime. For any $\Xi \in \mathbb{Z}^{n(n-1)/2+2n}$, let $Z_n(\Xi; p_n) \triangleq Z_n(\Xi) \pmod{p_n}$.
- Suppose $\mathbf{U} \in \mathbb{Z}_{p_n}^{n(n-1)/2+2n}$ generated uniformly at random.
- Claim. Computing $Z_n(\mathbf{U}; p_n)$ is hard on average by worst-case to average reduction: if there exists an algorithm \mathcal{A} enjoying

$$\mathbb{P}(Z_{\mathcal{A}}(\mathbf{U}; p_n) = Z_n(\mathbf{U}; p_n)) \geq n^{-k},$$

then P = #P. Based on worst-case hardness for arbitrary inputs.

• Downward self-reduction from *n*-spin system to (n-1)-spin system: for some parameters $B'_n, C'_n \in \mathbb{Z}_{p_n}$ and $\mathbf{B}^+, \mathbf{B}^-, \mathbf{C}^+, \mathbf{C}^- \in \mathbb{Z}_{p_n}^{n-1}$, it holds:

$$Z_n(\mathbf{J},\mathbf{B},\mathbf{C};p_n)=C_n'Z_{n-1}(\mathbf{J}',\mathbf{B}^+,\mathbf{C}^+;p_n)+B_n'Z_{n-1}(\mathbf{J}',\mathbf{B}^-,\mathbf{C}^-;p_n).$$

Analogous to Laplace expansion for permanent.

D. Gamarnik, E. C. Kızıldağ (MIT)

人口区 医静脉 医原体 医原体 医尿

D. Gamarnik, E. C. Kızıldağ (MIT)

イロト 不得 トイヨト イヨト

• Recall. The object of interest satisfies

$$Z_n(\mathbf{J},\mathbf{B},\mathbf{C};\rho_n)=C'_nZ_{n-1}(\mathbf{J}',\mathbf{B}^+,\mathbf{C}^+;\rho_n)_+B'_nZ_{n-1}(\mathbf{J}',\mathbf{B}^-,\mathbf{C}^-;\rho_n).$$

・ロト ・ 一下・ ・ 日 ト ・

• Recall. The object of interest satisfies

$$Z_n(\mathbf{J},\mathbf{B},\mathbf{C};\rho_n)=C_n'Z_{n-1}(\mathbf{J}',\mathbf{B}^+,\mathbf{C}^+;\rho_n)_+B_n'Z_{n-1}(\mathbf{J}',\mathbf{B}^-,\mathbf{C}^-;\rho_n).$$

 Construct a vector polynomial D(x) such that D(1) = (J', B⁺, C⁺) and D(2) = (J', B⁻, C⁻). D(x) thought of as a vector carrying parameters required for an (n-1)-spin system.

• Recall. The object of interest satisfies

$$Z_n(\mathbf{J},\mathbf{B},\mathbf{C};\rho_n)=C_n'Z_{n-1}(\mathbf{J}',\mathbf{B}^+,\mathbf{C}^+;\rho_n)_+B_n'Z_{n-1}(\mathbf{J}',\mathbf{B}^-,\mathbf{C}^-;\rho_n).$$

- Construct a vector polynomial D(x) such that D(1) = (J', B⁺, C⁺) and D(2) = (J', B⁻, C⁻). D(x) thought of as a vector carrying parameters required for an (n-1)-spin system.
- Let φ(x) = Z_n(D(x); p_n), associated partition function. φ(·) is univariate polynomial, of degree at most n².

• Recall. The object of interest satisfies

$$Z_n(\mathbf{J},\mathbf{B},\mathbf{C};\rho_n)=C_n'Z_{n-1}(\mathbf{J}',\mathbf{B}^+,\mathbf{C}^+;\rho_n)_+B_n'Z_{n-1}(\mathbf{J}',\mathbf{B}^-,\mathbf{C}^-;\rho_n).$$

- Construct a vector polynomial D(x) such that D(1) = (J', B⁺, C⁺) and D(2) = (J', B⁻, C⁻). D(x) thought of as a vector carrying parameters required for an (n-1)-spin system.
- Let φ(x) = Z_n(D(x); p_n), associated partition function. φ(·) is univariate polynomial, of degree at most n².
- Note that

$$Z_n(\mathbf{J},\mathbf{B},\mathbf{C};p_n)=C'_n\phi(1)+B'_n\phi(2).$$

• Recall. The object of interest satisfies

$$Z_n(\mathbf{J},\mathbf{B},\mathbf{C};\rho_n)=C_n'Z_{n-1}(\mathbf{J}',\mathbf{B}^+,\mathbf{C}^+;\rho_n)_+B_n'Z_{n-1}(\mathbf{J}',\mathbf{B}^-,\mathbf{C}^-;\rho_n).$$

- Construct a vector polynomial D(x) such that D(1) = (J', B⁺, C⁺) and D(2) = (J', B⁻, C⁻). D(x) thought of as a vector carrying parameters required for an (n-1)-spin system.
- Let φ(x) = Z_n(D(x); p_n), associated partition function. φ(·) is univariate polynomial, of degree at most n².
- Note that

$$Z_n(\mathbf{J},\mathbf{B},\mathbf{C};p_n)=C'_n\phi(1)+B'_n\phi(2).$$

• Thus Z_n can be computed provided $\phi(\cdot)$ can be reconstructed.

D. Gamarnik, E. C. Kızıldağ (MIT)

イロト 不得 トイヨト イヨト

 Use A to generate a list of noisy samples of φ(·). Reconstruct φ using a list-decoder by Sudan [96].

- Use A to generate a list of noisy samples of φ(·). Reconstruct φ using a list-decoder by Sudan [96].
- Thus, if A (exactly) computes Z_n correctly for n^{-k} fraction of all inputs from Z^{n(n-1)/2}_{p_n}, then it computes Z_n(**a**; p_n) for **any a**, with probability 1 − o(1).

- Use A to generate a list of noisy samples of φ(·). Reconstruct φ using a list-decoder by Sudan [96].
- Thus, if A (exactly) computes Z_n correctly for n^{-k} fraction of all inputs from Z^{n(n-1)/2}_{p_n}, then it computes Z_n(a; p_n) for any a, with probability 1 − o(1).
- Use tail bound to control value of partition function.

- Use A to generate a list of noisy samples of φ(·). Reconstruct φ using a list-decoder by Sudan [96].
- Thus, if \mathcal{A} (exactly) computes Z_n correctly for n^{-k} fraction of all inputs from $\mathbb{Z}_{p_n}^{n(n-1)/2}$, then it computes $Z_n(\mathbf{a}; p_n)$ for **any a**, with probability 1 o(1).
- Use tail bound to control value of partition function.
- Use prime density to take sufficiently many primes, product larger than partition function. Apply Chinese remaindering.

D. Gamarnik, E. C. Kızıldağ (MIT)

イロト 不得 トイヨト イヨト

• Rest is a probabilistic coupling argument.

э

・ コ ト ・ 雪 ト ・ ヨ ト ・

- Rest is a probabilistic coupling argument.
- Recall $\widetilde{J}_{ij} = 2^N \widehat{J}_{ij}^{[N]}$, where $\widehat{J}_{ij}^{[N]} = 2^{-N} \lfloor 2^N \widehat{J}_{ij} \rfloor$, and $\widehat{J}_{ij} = \exp(\beta J_{ij} n^{-1/2})$. Recall also $\widetilde{B}_i, \widetilde{C}_i$.

イロト イヨト イヨト イヨ

- Rest is a probabilistic coupling argument.
- Recall $\widetilde{J}_{ij} = 2^N \widehat{J}_{ij}^{[N]}$, where $\widehat{J}_{ij}^{[N]} = 2^{-N} \lfloor 2^N \widehat{J}_{ij} \rfloor$, and $\widehat{J}_{ij} = \exp(\beta J_{ij} n^{-1/2})$. Recall also $\widetilde{B}_i, \widetilde{C}_i$.
- Show $\widetilde{J}_{ij}, \widetilde{B}_i, \widetilde{C}_i$ modulo p_n are close to uniform distribution.

- Rest is a probabilistic coupling argument.
- Recall $\widetilde{J}_{ij} = 2^N \widehat{J}_{ij}^{[N]}$, where $\widehat{J}_{ij}^{[N]} = 2^{-N} \lfloor 2^N \widehat{J}_{ij} \rfloor$, and $\widehat{J}_{ij} = \exp(\beta J_{ij} n^{-1/2})$. Recall also $\widetilde{B}_i, \widetilde{C}_i$.
- Show $\widetilde{J}_{ij}, \widetilde{B}_i, \widetilde{C}_i$ modulo p_n are close to uniform distribution.
- Use coupling idea to conclude.

Overview

- Model and Algorithmic Problem
- Part I: Hardness under Finite Precision Arithmetic.
 - Cuts/Polarities
 - Truncation
 - Main Result
 - Proof Sketch
- ③ Part II: Hardness under Real-Valued Model.
 - Setup and Model
 - Main Result
- 4 Concluding Remarks
 - Extensions
 - Limitations and Open Problems

Part II. Hardness under Real-Valued Model. Setup and Model

э

Image: A math a math

Part II. Hardness under Real-Valued Model. Setup and Model

• Hardness when computational engine (e.g. Blum-Shub-Smale machine) operates over real-valued inputs. Each arithmetic operation has unit cost.

Part II. Hardness under Real-Valued Model. Setup and Model

- Hardness when computational engine (e.g. Blum-Shub-Smale machine) operates over real-valued inputs. Each arithmetic operation has unit cost.
- We consider Hamiltonian without external field: $H(\sigma) = \sum_{i < j} J_{ij}\sigma_i\sigma_j$.
Part II. Hardness under Real-Valued Model. Setup and Model

- Hardness when computational engine (e.g. Blum-Shub-Smale machine) operates over real-valued inputs. Each arithmetic operation has unit cost.
- We consider Hamiltonian without external field: $H(\sigma) = \sum_{i < j} J_{ij}\sigma_i\sigma_j$.
- Scaling \sqrt{n} and inverse temperature β suppressed for simplicity.

Part II. Hardness under Real-Valued Model. Setup and Model

- Hardness when computational engine (e.g. Blum-Shub-Smale machine) operates over real-valued inputs. Each arithmetic operation has unit cost.
- We consider Hamiltonian without external field: $H(\sigma) = \sum_{i < j} J_{ij}\sigma_i\sigma_j$.
- Scaling \sqrt{n} and inverse temperature β suppressed for simplicity.
- After reducing to cuts analogously, boils down computing

$$\widehat{Z}(\mathsf{J}) = \sum_{\sigma \in \{\pm 1\}^n} \exp\left(\sum_{\sigma_i \neq \sigma_j} 2J_{ij}\right).$$

Part II. Hardness under Real-Valued Model. Setup and Model

- Hardness when computational engine (e.g. Blum-Shub-Smale machine) operates over real-valued inputs. Each arithmetic operation has unit cost.
- We consider Hamiltonian without external field: $H(\sigma) = \sum_{i < j} J_{ij}\sigma_i\sigma_j$.
- Scaling \sqrt{n} and inverse temperature β suppressed for simplicity.
- After reducing to cuts analogously, boils down computing

$$\widehat{Z}(\mathbf{J}) = \sum_{\boldsymbol{\sigma} \in \{\pm 1\}^n} \exp\left(\sum_{\sigma_i \neq \sigma_j} 2J_{ij}\right).$$

• Techniques of previous setting tailored to finite precision model: finite field structure \mathbb{Z}_p is lost upon passing real-valued model. By pass through an argument by Aaronson and Arkhipov [2011].

ヘロト 人間ト ヘヨト ヘヨト

Main Result

Part II. Hardness under Real-Valued Model: Main result

D. Gamarnik, E. C. Kızıldağ (MIT)

Average-Case Hardness of SK Model

イロト イポト イヨト イヨ э

> June, 2020 18 / 22

Theorem (Gamarnik & K., 2019)

Let $\mathbf{J} = (J_{ii} : 1 \le i < j \le n) \in \mathbb{R}^{n(n-1)/2}$ consists of iid standard normal entries, and \mathcal{A} be a polynomial-in-n time algorithm such that $\mathbb{P}(\mathcal{A}(\mathbf{J}) = \widehat{Z}(\mathbf{J})) \geq \frac{3}{4} + \delta$, where $\delta \geq 1/\text{poly}(n) > 0$ is arbitrary. Then, P = #P.

D. Gamarnik, E. C. Kızıldağ (MIT)

Average-Case Hardness of SK Model

June. 2020 18/22

Theorem (Gamarnik & K., 2019)

Let $\mathbf{J} = (J_{ii} : 1 \le i < j \le n) \in \mathbb{R}^{n(n-1)/2}$ consists of iid standard normal entries, and \mathcal{A} be a polynomial-in-n time algorithm such that $\mathbb{P}(\mathcal{A}(\mathbf{J}) = \widehat{Z}(\mathbf{J})) \geq \frac{3}{4} + \delta$, where $\delta \geq 1/\text{poly}(n) > 0$ is arbitrary. Then, P = #P.

Remarks.

D. Gamarnik, E. C. Kızıldağ (MIT)

Average-Case Hardness of SK Model

June. 2020 18 / 22

Theorem (Gamarnik & K., 2019)

Let $\mathbf{J} = (J_{ij} : 1 \le i < j \le n) \in \mathbb{R}^{n(n-1)/2}$ consists of iid standard normal entries, and \mathcal{A} be a polynomial-in-n time algorithm such that $\mathbb{P}(\mathcal{A}(\mathbf{J}) = \widehat{Z}(\mathbf{J})) \ge \frac{3}{4} + \delta$, where $\delta \ge 1/\text{poly}(n) > 0$ is arbitrary. Then, P = #P.

Remarks.

• Again, based on hardness of computing partition function for arbitrary inputs.

Theorem (Gamarnik & K., 2019)

Let $\mathbf{J} = (J_{ii} : 1 \le i < j \le n) \in \mathbb{R}^{n(n-1)/2}$ consists of iid standard normal entries, and \mathcal{A} be a polynomial-in-n time algorithm such that $\mathbb{P}(\mathcal{A}(\mathsf{J}) = \widehat{Z}(\mathsf{J})) \geq \frac{3}{4} + \delta$, where $\delta \geq 1/\mathrm{poly}(n) > 0$ is arbitrary. Then, P = #P.

Remarks.

- Again, based on hardness of computing partition function for arbitrary inputs.
- A similar program: boils down reconstructing a certain low-degree polynomial from its noisy samples. This time. Berklekamp-Welch decoder is used instead.

1 E K

Main Result

Part II. Hardness under Real-Valued Model: Main result

Theorem (Gamarnik & K., 2019)

Let $\mathbf{J} = (J_{ii} : 1 \le i < j \le n) \in \mathbb{R}^{n(n-1)/2}$ consists of iid standard normal entries, and \mathcal{A} be a polynomial-in-n time algorithm such that $\mathbb{P}(\mathcal{A}(\mathbf{J}) = \widehat{Z}(\mathbf{J})) \geq \frac{3}{4} + \delta$, where $\delta \geq 1/\text{poly}(n) > 0$ is arbitrary. Then, P = #P.

Remarks.

- Again, based on hardness of computing partition function for arbitrary inputs.
- A similar program: boils down reconstructing a certain low-degree polynomial from its noisy samples. This time. Berklekamp-Welch decoder is used instead.
- Uses a control for total variation distance for log-normal random variables, in presence of a convex perturbation.

イロト 不得 とくほ とくほ とうほう

Overview

- Model and Algorithmic Problem
- Part I: Hardness under Finite Precision Arithmetic.
 - Cuts/Polarities
 - Truncation
 - Main Result
 - Proof Sketch
- ③ Part II: Hardness under Real-Valued Model.
 - Setup and Model
 - Main Result
- 4 Concluding Remarks
 - Extensions
 - Limitations and Open Problems

Concluding Remarks : Extensions

D. Gamarnik, E. C. Kızıldağ (MIT)

Average-Case Hardness of SK Model

・ロト ・ 同ト ・ ヨト ・ ヨ Э June, 2020

20 / 22

Concluding Remarks : Extensions

• Average-case hardness of algorithmic problem of exactly computing partition function of SK spin glass model. Under both finite precision arithmetic and real-valued computational models.

Concluding Remarks : Extensions

- Average-case hardness of algorithmic problem of exactly computing partition function of SK spin glass model. Under both finite precision arithmetic and real-valued computational models.
- To the best of our knowledge, first such average-case hardness result for a statistical physics model.

Concluding Remarks : Extensions

- Average-case hardness of algorithmic problem of exactly computing partition function of SK spin glass model. Under both finite precision arithmetic and real-valued computational models.
- To the best of our knowledge, first such average-case hardness result for a statistical physics model.

Extensions.

Concluding Remarks : Extensions

- Average-case hardness of algorithmic problem of exactly computing partition function of SK spin glass model. Under both finite precision arithmetic and real-valued computational models.
- To the best of our knowledge, first such average-case hardness result for a statistical physics model.

Extensions.

• 2-spin assumption is non-essential: extends to the p-spin models.

Concluding Remarks : Extensions

- Average-case hardness of algorithmic problem of exactly computing partition function of SK spin glass model. Under both finite precision arithmetic and real-valued computational models.
- To the best of our knowledge, first such average-case hardness result for a statistical physics model.

Extensions.

- 2-spin assumption is non-essential: extends to the p-spin models.
- Gaussianity of the couplings is non-essential. Well behaved distributions with sufficiently smooth density should be enough.

Concluding Remarks : Extensions

- Average-case hardness of algorithmic problem of exactly computing partition function of SK spin glass model. Under both finite precision arithmetic and real-valued computational models.
- To the best of our knowledge, first such average-case hardness result for a statistical physics model.

Extensions.

- 2-spin assumption is non-essential: extends to the p-spin models.
- Gaussianity of the couplings is non-essential. Well behaved distributions with sufficiently smooth density should be enough.
- The scaling $n^{-\frac{1}{2}}$ is non-essential: any constant power of *n* is ok.

4 E N

D. Gamarnik, E. C. Kızıldağ (MIT)

Average-Case Hardness of SK Model

• Our approach does not treat the same problem when couplings are i.i.d. Rademacher. Not surprising though in light of the fact that average-case hardness of computing permanent of a binary matrix is open as well.

- Our approach does not treat the same problem when couplings are i.i.d. Rademacher. Not surprising though in light of the fact that average-case hardness of computing permanent of a binary matrix is open as well.
- The trick of (mod p_n) computation is too "fragile" to survive the approximate computation: average-case hardness of computing Z(J, β) to within a multiplicative factor of 1 ± ε remains open.

- Our approach does not treat the same problem when couplings are i.i.d. Rademacher. Not surprising though in light of the fact that average-case hardness of computing permanent of a binary matrix is open as well.
- The trick of (mod p_n) computation is too "fragile" to survive the approximate computation: average-case hardness of computing Z(J, β) to within a multiplicative factor of 1 ± ε remains open.

A related problem: Ground-state computation. $\sigma^* \in \{\pm 1\}^n$ is called a *ground-state* if $H(\sigma^*) = \max_{\sigma \in \{\pm 1\}^n} H(\sigma)$.

4 E N

- Our approach does not treat the same problem when couplings are i.i.d. Rademacher. Not surprising though in light of the fact that average-case hardness of computing permanent of a binary matrix is open as well.
- The trick of (mod p_n) computation is too "fragile" to survive the approximate computation: average-case hardness of computing Z(J, β) to within a multiplicative factor of 1 ± ε remains open.

A related problem: Ground-state computation. $\sigma^* \in \{\pm 1\}^n$ is called a *ground-state* if $H(\sigma^*) = \max_{\sigma \in \{\pm 1\}^n} H(\sigma)$.

• Arora et al. [05]: problem of computing ground state is NP-hard (in worst-case sense).

化原料 化原料

- Our approach does not treat the same problem when couplings are i.i.d. Rademacher. Not surprising though in light of the fact that average-case hardness of computing permanent of a binary matrix is open as well.
- The trick of (mod p_n) computation is too "fragile" to survive the approximate computation: average-case hardness of computing Z(J, β) to within a multiplicative factor of 1 ± ε remains open.

A related problem: Ground-state computation. $\sigma^* \in \{\pm 1\}^n$ is called a *ground-state* if $H(\sigma^*) = \max_{\sigma \in \{\pm 1\}^n} H(\sigma)$.

- Arora et al. [05]: problem of computing ground state is NP-hard (in worst-case sense).
- Montanari [19]: a message-passing algorithm, which for any $\epsilon > 0$, finds (in time $O(n^2)$) a state $\sigma_* \in \{\pm 1\}^n$ such that $H(\sigma_*) \ge (1-\epsilon)H(\sigma^*)$ whp.

・ロット (雪) (日) (日) (日) (日)

- Our approach does not treat the same problem when couplings are i.i.d. Rademacher. Not surprising though in light of the fact that average-case hardness of computing permanent of a binary matrix is open as well.
- The trick of (mod p_n) computation is too "fragile" to survive the approximate computation: average-case hardness of computing Z(J, β) to within a multiplicative factor of 1 ± ε remains open.

A related problem: Ground-state computation. $\sigma^* \in \{\pm 1\}^n$ is called a *ground-state* if $H(\sigma^*) = \max_{\sigma \in \{\pm 1\}^n} H(\sigma)$.

- Arora et al. [05]: problem of computing ground state is NP-hard (in worst-case sense).
- Montanari [19]: a message-passing algorithm, which for any $\epsilon > 0$, finds (in time $O(n^2)$) a state $\sigma_* \in \{\pm 1\}^n$ such that $H(\sigma_*) \ge (1 - \epsilon)H(\sigma^*)$ whp.
- Average-case hardness of problem of exactly computing σ* remains open: algebraic structure is lost upon passing to maximization.

D. Gamarnik, E. C. Kızıldağ (MIT)

Average-Case Hardness of SK Model

Thank you!

D. Gamarnik, E. C. Kızıldağ (MIT)

Average-Case Hardness of SK Model

▲□▶ ▲□▶ ▲ ■▶ ▲ ■▶ ▲ ■ ▶ ● Q ○

 June, 2020
 22 / 22