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High-Dimensional Linear Regression

Setup:

β∗ ∈ Rp (unknown) feature vector, p number of features..

Observe n noiseless linear samples Y = Xβ∗ ∈ Rn of β∗.

Measurement matrix X ∈ Rn×p, with random entries.

Goal:

Given (Y ,X ), recover β∗ accurately and efficiently (in polynomial time).

Question:

What is the smallest number n of measurements necessary?
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High-Dimensional Linear Regression

Question:

What is the smallest number n of measurements necessary to recover β∗?

Without any assumption: p.

Linear system in p unknowns, underdetermined if n < p.

Many practical applications (MRI imaging, natural language processing, genomics):
n� p.

Focus:

High-dimensional regime: n� p and p → +∞.
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High-Dimensional Linear Regression

Problem of recovering β∗ ∈ Rp from Y = Xβ∗ ∈ Rn is ill-posed if n� p, without extra
assumptions.

Question:

Is it possible to make the problem well-posed in the regime n� p, by imposing any structural
assumptions on β∗?

(Arguably) Most popular assumption in literature: Sparsity.

Meaning: s = |{i : β∗i 6= 0}| is small, compared to p.

Polynomial-time algorithms (such as LASSO [Wainwright ’09], OMP [Fletcher et al. ’11],
and Basis Pursuit) exist.

Essentially, (efficient) recovery of β∗ is possible if:

n > s log
p

s
.
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High-Dimensional Linear Regression

Efficient recovery for s−sparse β∗ (namely, |{i : β∗i 6= 0}| < s) possible if: n > s log p
s .

Number of samples n→ +∞ as p → +∞.

Question: What happens if n = o(s log(p/s))?

Basis Pursuit/BPDN fail to recover sparse & binary β∗ [Donoho-Tanner ’10]
LASSO fails to solve support recovery problem, if n = o(s log p) [Wainwright ’09]
Evidence of computational hardness for n < s log(p/s) [Gamarnik-Zadik ’17]
Other models (Tree-Sparsity [He-Carin ’09], Block-Sparsity [Eldar et al. ’10], Generative
Model [Bora et al. ’17]): Work for n < p, but not for n very small.

Question:

Can we address n = o(s log(p/s)) regime? Any hope for n = O(1) regime?
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A Related Recent Work (by Gamarnik and Zadik)

Let β∗ ∈ Rp, Y = Xβ∗ + W ∈ Rn, W ∼ N(0, σ2), and Q ∈ Z+.

Structural Assumption: β∗i = Ki/Q, where Ki ∈ Z, and |Ki | 6 R.

Application: Half of β∗i ∈ Z for linear GPS models (namely, Q = 1) [Boyd-Hassibi ’98].

Thm [Gamarnik-Zadik ’18]: Recovery of β∗ (w.h.p. as p → +∞, in poly(p, n,Q,R)
time) even with n = 1 is possible, provided σ small.

Algorithm motivated from random subset-sum problem in cryptography; and based on
LLL lattice basis reduction algorithm.

D. Gamarnik, E. Kızıldağ (MIT) Regression without Sparsity July 10, 2019 7 / 23



A Related Recent Work (by Gamarnik and Zadik)

Let β∗ ∈ Rp, Y = Xβ∗ + W ∈ Rn, W ∼ N(0, σ2), and Q ∈ Z+.

Structural Assumption: β∗i = Ki/Q, where Ki ∈ Z, and |Ki | 6 R.

Application: Half of β∗i ∈ Z for linear GPS models (namely, Q = 1) [Boyd-Hassibi ’98].

Thm [Gamarnik-Zadik ’18]: Recovery of β∗ (w.h.p. as p → +∞, in poly(p, n,Q,R)
time) even with n = 1 is possible, provided σ small.

Algorithm motivated from random subset-sum problem in cryptography; and based on
LLL lattice basis reduction algorithm.

D. Gamarnik, E. Kızıldağ (MIT) Regression without Sparsity July 10, 2019 7 / 23



A Related Recent Work (by Gamarnik and Zadik)

Let β∗ ∈ Rp, Y = Xβ∗ + W ∈ Rn, W ∼ N(0, σ2), and Q ∈ Z+.

Structural Assumption: β∗i = Ki/Q, where Ki ∈ Z, and |Ki | 6 R.

Application: Half of β∗i ∈ Z for linear GPS models (namely, Q = 1) [Boyd-Hassibi ’98].

Thm [Gamarnik-Zadik ’18]: Recovery of β∗ (w.h.p. as p → +∞, in poly(p, n,Q,R)
time) even with n = 1 is possible, provided σ small.

Algorithm motivated from random subset-sum problem in cryptography; and based on
LLL lattice basis reduction algorithm.
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This Work

Question 1:

Is it possible to make the problem (given Y = Xβ∗ ∈ Rn, infer β∗ ∈ Rp) well-posed when
n = 1, and β∗ has irrational entries?

Question 2:

Is there an efficient algorithm to recover β∗ when n = 1? In other words, is it possible to
ensure no statistical-computational gap?

Structural Assumption: β∗ supp. on S with |S| = poly(p), rationally independent.

Answer: Yes, to both. ⇒ No statistical-computational gap.

Algorithmic connection to subset-sum and integer relation detection problems; and to
lattices.
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PSLQ alg.:
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Preliminaries

Subset-Sum Problem

Given: X = (X1, . . . ,Xn) ∈ Zn and Y ∈ Z; find an S ⊆ [n]:
∑

i∈S Xi = Y .

Interpretations:

Regression: β∗ ∈ {0, 1}n, Y = 〈X, β∗〉. Given (Y ,X), recover β∗.
Cryptographic: β∗ ∈ {0, 1}n plaintext, Y = 〈X, β∗〉 ciphertext, and X public
information.

NP-hard in worst-case.

Average-Case Complexity ([Lagarias & Odlyzko ’85] and [Frieze ’86]):

Let Xi ∼ Unif{1, 2, . . . , 2cn2} iid with c > 1/2.
LLL algorithm [Lenstra et al. ’82] recovers β∗ whp as n→ +∞ in poly(n) time.
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Main Result (Discrete)

Theorem (Gamarnik & K., 2019)

Let Y = Xβ∗ ∈ R with:

X ∈ Z1×p with iid entries; ∃N ∈ Z+, such that : E[|X1|] 6 O(2N) and
P(Xi = x) 6 O(2−N), for every x ∈ Z.
β∗i ∈ S = {a1, . . . , aR}, rationally independent, known to learner, R = poly(p).

There exists an algorithm, recovering β∗ whp (as p → +∞) in poly(p,N,R) time, provided
N > (12 + ε)p2 for any ε > 0.

Single sample (n = 1), efficient recovery (poly(p,N,R) time).

Works, provided (iid) entries of X are from a large integer support.

Uses PSLQ (integer relation) + LLL (lattice reduction) oracles.
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Main Result (Continuous)

Theorem (Gamarnik & K., 2019)

Let Y = Xβ∗ ∈ R with:

X ∈ R1×p, jointly continuous.

β∗i ∈ S = {a1, . . . , aR}, rationally independent, known to learner, R = poly(p).

There exists an algorithm, recovering β∗ almost surely in poly(p,R) time.

Single measurement (n = 1), efficient recovery (poly(p,R) time).

Only joint continuity of X is required.

Needs only PSLQ (integer relation) oracle.
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Existence of Information

Information exists even with one sample (n = 1)!

Lemma

The following holds almost surely: For every β, β∗ ∈ Sp, and jointly continuous random vector
X ∈ Rp; Xβ and Xβ∗ are distinct. Thus, brute-force search works.

Proof.

P(Lemmac) = P (∃β 6= β∗ : Xβ = Xβ∗) 6 R2pP (X(β − β∗) = 0) = 0.

Similar argument applies also to measurement matrix with discrete entries.

Brute force takes O(Rp) time (exponential in p).

Our result: Polynomial-time decoding.

No statistical-computational gap, when β∗ supported on rationally independent S.
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D. Gamarnik, E. Kızıldağ (MIT) Regression without Sparsity July 10, 2019 14 / 23



Existence of Information

Information exists even with one sample (n = 1)!

Lemma

The following holds almost surely: For every β, β∗ ∈ Sp, and jointly continuous random vector
X ∈ Rp; Xβ and Xβ∗ are distinct. Thus, brute-force search works.

Proof.

P(Lemmac) = P (∃β 6= β∗ : Xβ = Xβ∗) 6 R2pP (X(β − β∗) = 0) = 0.

Similar argument applies also to measurement matrix with discrete entries.

Brute force takes O(Rp) time (exponential in p).

Our result: Polynomial-time decoding.

No statistical-computational gap, when β∗ supported on rationally independent S.
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Proof Idea (Discrete)

Recall: Y = Xβ∗ ∈ R, X ∈ Zp iid. β∗i ∈ S = {a1, . . . , aR} rat. independent.

Y is an integer combination of S:

Y =
R∑

k=1

θ∗kak where θ∗k =
∑

j :β∗
j =ak

Xj ∈ Z.

Thus, ∃ an integer relation m ∈ ZR+1 \ {0} for the vector A = (Y , ai : i ∈ [R]) ∈ RR+1.

PSLQ with input Y and {a1, . . . , aR} recovers an m in poly(p,R,N) time.

m is essentially unique up to a constant multiple:

{a1, . . . , aR} rat. indep. ⇒ m = −m0(−1, θ∗1, . . . , θ
∗
R)

(θ∗1, . . . , θ
∗
R) can be obtained in poly(p,N,R) time.
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Proof Idea (Discrete)

Recall:

Y =
R∑

k=1

θ∗kak where θ∗k =
∑

j :β∗
j =ak

Xj ∈ Z,∀k.

(θ∗1, . . . , θ
∗
R) recovered in poly(p,N,R) time.

Define Sk = {j ∈ [p] : β∗j = ak} ⊆ {1, . . . , p}. We have θ∗k =
∑

j∈Sk Xj .

Problem: Given X1, . . . ,Xp ∈ Z, and θ∗k =
∑

j∈Sk Xj ∈ Z, obtain Sk ⊆ [p].

This is precisely the subset-sum problem!

Apply LLL algorithm (à la Frieze) to conclude.
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D. Gamarnik, E. Kızıldağ (MIT) Regression without Sparsity July 10, 2019 16 / 23



Proof Idea (Discrete)

Recall:

Y =
R∑

k=1

θ∗kak where θ∗k =
∑

j :β∗
j =ak

Xj ∈ Z,∀k.

(θ∗1, . . . , θ
∗
R) recovered in poly(p,N,R) time.

Define Sk = {j ∈ [p] : β∗j = ak} ⊆ {1, . . . , p}. We have θ∗k =
∑

j∈Sk Xj .

Problem: Given X1, . . . ,Xp ∈ Z, and θ∗k =
∑

j∈Sk Xj ∈ Z, obtain Sk ⊆ [p].

This is precisely the subset-sum problem!
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Proof Idea (Continuous)

Recall: Y = Xβ∗ ∈ R, X ∈ Rp jointly continuous, β∗i ∈ S = {a1, . . . , aR}, S rationally
independent, available to learner.

Let L = {Xiaj : 1 6 i 6 p, 1 6 j 6 R}.

Lemma

P(L is rationally independent) = 1

Y is an integer combination of L: Y =
∑p

i=1

∑R
j=1 Xiajξ

∗
ij where ξ∗ij ∈ {0, 1}.

∃ an integer relation m for vector A′ = (Y ,Xiaj : i ∈ [p], j ∈ [R]) ∈ RpR+1.

L rationally independent ⇒ m is of form m = k(−1, ξ∗ij : i ∈ [p], j ∈ [R]), k ∈ Z \ {0}.
PSLQ recovers an m in poly(p,R) time, from which {ξ∗ij : i ∈ [p], j ∈ [R]}is obtained.
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D. Gamarnik, E. Kızıldağ (MIT) Regression without Sparsity July 10, 2019 17 / 23



Proof Idea (Continuous)

Recall: Y = Xβ∗ ∈ R, X ∈ Rp jointly continuous, β∗i ∈ S = {a1, . . . , aR}, S rationally
independent, available to learner.

Let L = {Xiaj : 1 6 i 6 p, 1 6 j 6 R}.

Lemma

P(L is rationally independent) = 1

Y is an integer combination of L: Y =
∑p

i=1

∑R
j=1 Xiajξ

∗
ij where ξ∗ij ∈ {0, 1}.

∃ an integer relation m for vector A′ = (Y ,Xiaj : i ∈ [p], j ∈ [R]) ∈ RpR+1.

L rationally independent ⇒ m is of form m = k(−1, ξ∗ij : i ∈ [p], j ∈ [R]), k ∈ Z \ {0}.

PSLQ recovers an m in poly(p,R) time, from which {ξ∗ij : i ∈ [p], j ∈ [R]}is obtained.
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Phase Retrieval

Problem (Phase Retrieval)

Let β∗ ∈ Cp. Learner sees n measurements Yi = |〈Xi , β
∗〉|, i ∈ [n].

Goal: Recover β∗ efficiently and accurately, with smallest possible number n of samples.

Theorem (Gamarnik & K., 2019 (Informal))

Let Y = |〈X , β∗〉| ∈ R with:

X ∈ Zp
+ with iid entries over a large support, or X ∈ Rp with iid continuous entries

β∗i ∈ S = {a1, . . . , aR} ⊂ C, known to learner; S ′ = {aHi aj + aia
H
j : i , j ∈ [R]} rationally

independent.

Then, there exists an algorithm recovering β∗ whp, poly(p,R, ·) time.
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Phase Retrieval: Subset-Sum with Dependent Inputs

High-level proof idea is similar.

Y 2 integral combination of S ′ = {aHi aj + aia
H
j : i , j ∈ [R]}.

(Integer) Relation coefficients are more involved.
Need to solve a subset sum problem with dependent inputs of form: Given θ∗ ∈ Z and
(Xi )

p
i=1 ⊂ Z iid, recover ξij ∈ {0, 1}, where

θ∗ =
∑

16i<j6p

XiXjξij .

Theorem (Gamarnik & K., 2019)

Let X = (Xi )
p
i=1 iid, ∃N ∈ Z+ such that P(Xi = x) 6 O(2−N) and E[Xi ] 6 O(2N).

θ∗ =
∑

i<j XiXjξij with ξij ∈ {0, 1}.

Then, there exists an algorithm, which takes (θ∗,X) as input and recovers ξij whp in
poly(p,N) time, provided N > (1/8 + ε)p4 for any ε > 0.
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Contributions

New efficient algorithm for high-dimensional linear regression problem, when β∗ ∈ Rp

supported on a rationally independent set of poly(p) size.

Algorithm provably recovers β∗ ∈ Rp w.h.p. as p → +∞, even with one linear
measurement Y = Xβ∗ ∈ R, for a large class of distributions for entries of X .

In this regime, sparsity-based methods are known to fail!

Side product: LLL algorithm works for subset-sum problem with dependent inputs.

Algorithmic connection to certain discrete problems: integer-relation detection,
subset-sum, approximate short vector.

No statistical-computational gap under our assumptions.
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Thank you!
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