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E. C. Kızıldağ (MIT) OGP in the NPP Sep 21, 2021 2 / 39



Number Partitioning Problem (NPP): Definition.

Given n items X1, . . . ,Xn; partition them into two “bins” with total weights as close as
possible:

min
A⊂[n]

∣∣∣∣∣∑
i∈A

Xi −
∑
i∈Ac

Xi

∣∣∣∣∣.
Equivalently

min
σ∈Bn

∣∣∣〈σ,X 〉∣∣∣, where Bn = {−1, 1}n and 〈σ,X 〉 =
∑

1≤i≤n
σiXi .

Our focus. Items Xi are i.i.d. standard normal: Xi
d
= N (0, 1).
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Application of NPP: Design of Randomized Controlled Trials

Randomized controlled trials. Gold standard for clinical trials
[KAK19, HSSZ19].

n persons with covariate info (age, weight, height,...) Xi ∈ Rd , 1 ≤ i ≤ n.

Split into two groups (treatment and control) with similar “features”:

min
σ∈Bn

∥∥Xσ∥∥∞, where X = (X1,X2, . . . ,Xn) ∈ Rd×n.

Goal. Accurate inference for a treatment effect.
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More on “Why NPP is interesting to study?”

Vast literature...

(Many) other applications, including Multiprocessor scheduling, VLSI design,
cryptography... [CL91]

Also of theoretical importance, in theoretical CS and statistical mechanics:

TCS. One of six basic NP-complete problems by [GJ90].
Statistical Physics. Locally REM, phase transitions
[BCP01, BCMN09a, BCMN09b].

Combinatorial discrepancy theory.
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Our Work: Statistical-to-Computational Gap of NPP and the OGP

Statistical-to-computational gaps: Gap between existential guarantees and
(polynomial-time) algorithmic guarantees.

NPP has a statistical-to-computational gap.

Origins of this gap?: Landscape of NPP via statistical physics lens.

This work:

Overlap Gap Property (OGP): Intricate geometric property.

Leverage OGP to rule out certain classes of algorithms.
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NPP: Available Existential Guarantees

Xi ∈ Rd , 1 ≤ i ≤ n. Define

Dn , min
σ∈Bn

‖Xσ‖∞ where X = (X1, . . . ,Xn) ∈ Rd×n.

Worst-case, [Spe85]: For d = n and maxi ‖Xi‖∞ ≤ 1, Dn ≤ 6
√
n. Non-constructive.

Average-case: Assume Xi
d
= N (0, Id), 1 ≤ i ≤ n, i.i.d. For 1 ≤ d ≤ o(n),

Dn = Θ
(√

n2−n/d
)
, w.h.p.

[KKLO86]: d = 1. [Cos09]: d = O(1). [TMR20]: ω(1) ≤ d ≤ o(n).
Average-case, E: [Lue98]: for d = 1,

E
[
Dn

]
= O

(
2−cn

)
.
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NPP: Available (Polynomial-Time) Algorithmic Guarantees

Xi
d
= N (0, Id), 1 ≤ i ≤ n i.i.d.

[KK82]: For d = 1; returns σALG ∈ Bn with

|〈σALG,X 〉| = 2−Θ(log2 n), w.h.p.

A simpler heuristic, Largest Differencing Method (LDM). Also good performance [Yak96]:

E[LDM] = n−Θ(log n).

[TMR20]: For 2 ≤ d ≤ O(
√

log n), returns a σALG ∈ Bn with

∥∥XσALG

∥∥
∞ = exp

(
−Ω

(
log2 n

d

))
, w.h.p.
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NPP: A Statistical-to-Computational Gap

Gap between existential guarantees and what polynomial-time algorithms can promise.

For X
d
= N (0, In),

min
σ∈Bn

|〈σ,X 〉| = Θ(
√
n2−n) vs |〈σALG,X 〉| = 2−Θ(log2 n).

Ignoring
√
n, a striking gap: 2−n vs 2−Θ(log2 n).

Source of this gap/hardness?
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Statistical-to-Computational Gaps

Common feature in many algorithmic problems in high-dimensional statistics & random
combinatorial structures:

Random k-SAT, optimization over random graphs, p-spin model, planted clique, matrix PCA,
linear regression, spiked tensor, largest submatrix problem...

No analogue of worst-case theory (such as P 6= NP).
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Statistical-to-Computational Gaps

Various forms of rigorous evidences:

Low-degree methods: [Hop18, KWB19, Wei20]...

Reductions from the planted clique:
[BR13, BBH18, BB19]...

Many more: Failure of MCMC, Failure of BP/AMP, Methods from Statistical
Physics, SoS Lower Bounds,...
[Jer92, HSS15, LKZ15, ZK16, HKP+17, DKS17, BHK+19]...

Another approach (spin glass theory): Overlap Gap Property.
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The Overlap Gap Property (OGP)

Generic optimization problem with random ξ:

min
θ∈Θ
L(σ, ξ).

(Informally) OGP for energy E if ∃0 < ν1 < ν2 s.t. ∀σ1, σ2 ∈ Θ,

L(σj , ξ) ≤ E =⇒ distance(σ1, σ2) < ν1 or distance(σ1, σ2) > ν2.

Any two near optimal σ1, σ2 are either too similar or too dissimilar.

distance(·, ·)
For Θ = Bn = {−1, 1}n, normalized overlap:

O(σ, σ′) = n−1|〈σ, σ′〉| ∈ [0, 1].

Large O ⇐⇒ Small dH ⇐⇒ Similar σ ≈ σ′.
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Overlap Gap Property - A Pictorial Illustration

OGP for E .
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OGP: Prior Work

Clustering in k−SAT: Solution space consists of disconnected clusters
[MMZ05, ACO08, ACORT11].

First algorithmic implication: Max independent set in random d−regular graph Gd(n).
[GS17a].

OGP: Any large I1, I2 either have significant intersection, or no intersection at all.

Local algorithms fail to return a large I.

E. C. Kızıldağ (MIT) OGP in the NPP Sep 21, 2021 14 / 39



OGP in Other Problems & OGP as a Provable Algorithmic Barrier

Many other problems with OGP:

random k-SAT, NAE-k-SAT, p-spin model, sparse PCA, largest submatrix problem, max-CUT,
planted clique...

OGP as a provable barrier to algorithms:

WALKSAT, local algorithms, stable algorithms, low-degree polynomials, AMP, MCMC...

[COHH17, GS17b, GJW20, Wei20, GJ21, GJS19, GZ19, AWZ20, BH21]...
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Our Contributions: 2−OGP for NPP.

Recall minσ∈Bn |〈σ,X 〉|, X
d
= N (0, In), and its gap 2−n vs 2−Θ(log2 n).

Theorem (2-OGP)

(Informally) OGP holds below 2−
n
2 .

Formally, ∀ε ∈ (1/2, 1), ∃ρ := ρ(ε) ∈ (0, 1) such that if σ, σ′ ∈ Bn achieve

|〈σ,X 〉| = O(
√
n2−εn) and |〈σ′,X 〉| = O(

√
n2−εn)

then either σ = σ′ or n−1|〈σ, σ′〉| ≤ ρ w.h.p. That is, n−1|〈σ, σ′〉| /∈ (ρ, n−2
n ].

Partitions achieving better than 2−
n
2 are isolated vectors separated by Θ(n) distance.

Known as Frozen 1-RSB. Similar picture for Symmetric Ising Perceptron [PX21, ALS21].

Yields existence of a Free Energy Well (FEW): failure of Glauber dynamics (later).
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2-OGP: Proof Sketch via First Moment Method

Let N count the # of such (σ, σ′): P(N ≥ 1) ≤ E[N].

Number of σ, σ′ with n−1|〈σ, σ′〉| ≥ ρ is 2n+nh((1−ρ)/2), where h(·) is binary entropy.

σ, σ′ with O(σ, σ′) = ρ. Let Y = n−
1
2 〈σ,X 〉 and Y ′ = n−

1
2 〈σ′,X 〉. Then,

P
(

(Y ,Y ′) ∈ (−2−εn, 2−εn)2
)
≈ O(2−2εn).

Hence

E[N] ≤ exp2

(
n + nh

(
1− ρ

2

)
− 2nε

)
.

As ε > 1/2,
1− 2ε+ h((1− ρ)/2) < 0

for a suitable ρ < 1.

Thus, E[N] ≤ exp(−Θ(n)).
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Ensemble-Multi-OGP for NPP.

2−OGP holds below 2−
n
2 . Still large gap with 2−Θ(log2 n).

Consider independent instances X0, . . . ,Xm
d
= N (0, In) i.i.d.; and interpolate

Yi (τ) =
√

1− τ2X0 + τXi
d
= N (0, In), τ ∈ [0, 1], 1 ≤ i ≤ m.
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Ensemble-Multi-OGP for NPP

m-tuples σi ∈ Bn (m−OGP); each near-optimal w.r.t.Yi (τi ), ∃τi ∈ [0, 1] (ensemble).

m-OGP: Reduces thresholds further: Max independent set in Gd(n).

- Computational threshold (log d/d)n, 2-OGP rules out |I| ≥ (1 + 1/
√

2)(log d/d)n.
- [RV17]: Study instead m-tuples Ii , 1 ≤ i ≤ m: hit (log d/d)n.
- Similar story for NAE-k-SAT [GS17b].

Ensemble OGP: Can rule out any sufficiently stable algorithm
[GJW20, Wei20, GJ21, BH21].
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Our Contributions: Ensemble m−OGP for NPP.

Theorem (Ensemble-multi-OGP)

(Informally) Ensemble m−OGP holds below any 2−εn, ε > 0.
Formally, ∀ε > 0, ∀I ⊂ [0, 1] with |I| = 2o(n), ∃m ∈ N, ∃1 > β > η > 0 s.t. if

|〈σi ,Yi (τi )〉| = O
(√

n2−εn
)
, τi ∈ I, 1 ≤ i ≤ m

then w.h.p. ∃1 ≤ i < j ≤ m such that

n−1|〈σi , σj〉| /∈ (β − η, β).

No m partitions across interpolated instances of energy 2−εn and overlaps in (β − η, β).

Proof based on first moment method.
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Our Contributions: No m−OGP for NPP.

Still striking gap between 2−εn and 2−Θ(log2 n).

Theorem (No OGP)

(Informally) No OGP above 2−o(n).
Formally, ∀ω(1) ≤ f (n) ≤ o(n), ∀β, η ∈ (0, 1), and ∀m ∈ N; w.h.p. ∃σi , 1 ≤ i ≤ m such that

|〈σi ,X 〉| = O(
√
n2−f (n)) and n−1|〈σi , σj〉| ∈ [β − η, β + η]

Overlaps of partitions with energy worse than 2−o(n) span entire (0, 1).

Proof based on second moment method: let M count such m−tuples. Then,

P(M ≥ 1) ≥ E[M]2/E[M2].

If Var(M) = o(E[M]2) then P(M ≥ 1) = 1− on(1).
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Our Contributions: Ensemble m−OGP for NPP with m = ω(1).

NEW IDEA: Analyze m growing w.r.t. n.

Theorem (Ensemble-multi-OGP, m = ω(1))

(Informally) Ensemble m−OGP holds below 2−ω(
√
n log n) for super-constant m.

Formally, ∀ω(
√
n log n) ≤ En ≤ o(n), ∀I ⊂ [0, 1] with |I| = nO(1), ∃mn ∈ N,

∃1 > βn > ηn > 0 s.t. if

|〈σi ,Yi (τi )〉| ≤
√
n2−En , τi ∈ I, 1 ≤ i ≤ mn

then w.h.p. ∃1 ≤ i < j ≤ mn such that

n−1〈σi , σj〉 /∈ (βn − ηn, βn).

First m−OGP result with m = ωn(1).

The rate ω(
√
n log n) appears unimprovable.
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Problems with OGP and Algorithms Hardness Results

Random walk type algorithms for random k-SAT [COHH17].

Low-degree polynomials for random k-SAT [BH21].

Sequential local algorithms for NAE-k-SAT [GS17b].

Low-degree polynomials and Langevin dynamics [GJW20, Wei20].

AMP for optimizing p-spin model Hamiltonian [GJ21].

Overlap concentrated algorithms 1 for mixed, even p−spin model Hamiltonian [HS21+]

Low-depth circuits for even p−spin model Hamiltonian [GJW21].

OGP =⇒ FEW =⇒ Failure of MCMC: Principle submatrix problem [GJS19], planted
clique problem [GZ19], sparse PCA [AWZ20].

1Includes O(1) iteration of GD, AMP; and Langevin Dynamics run for O(1) time.
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Stable Algorithms: Formal Definition

Algorithm A, A(X ) = σ ∈ Bn.

Potentially randomized.

Informal: A is stable if small change in X yields small change in A(X ).

Semi-formally, A satisfies

Definition

(a) Success:

P
(
n−

1
2 |〈X ,A(X )〉| ≤ E

)
≥ 1− pf .

(b) Stability: ∃ρ ∈ (0, 1], X ,Y
d
= N (0, In) with Cov(X ,Y ) = ρIn;

P
(
dH (A(X ),A(Y )) ≤ f + L‖X − Y ‖2

2

)
≥ 1− pst.
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Stable Algorithms: Which Algorithms are Stable?

Stable algorithms include

Approximate message passing type algorithms [GJ21].

Low-degree polynomial based algorithms [GJW20].

Conjecture

Largest differencing (LDM) algorithm is stable.

Verified by simulations.
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OGP implies Failure of Stable Algorithms

Theorem (Stable Algorithms Fail for NPP)

Stable algorithms can’t achieve value better than

exp

(
−ω

(
n

log1/5 n

))
:

∀ε ∈ (0, 1/5), ∀ω(n log−1/5+ε n) ≤ En ≤ o(n), there is no stable A that w.h.p. returns a σ
with energy 2−En (with appropriate f , ρ′, pf , pst).

For extreme case, En = Θ(n): rule out pf , pst = O(1).

Proof Idea. By contradiction. Suppose ∃A.

m-OGP: a structure occurs with vanishing probability.
Run A on correlated instances. Show that w.p.> 0, forbidden structure occurs.

Rate 2−ω(n log−1/5 n): Via Ramsey Theory.
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An MCMC Dynamics for NPP

Let X
d
= N (0, In); and define Hamiltonian H(σ) , n−

1
2 |〈σ,X 〉|.

Define Gibbs distribution at inverse temperature β > 0 on Bn:

πβ(σ) =
1

Zβ
exp(−βH(σ)) where Zβ =

∑
τ∈Bn

exp(−βH(τ)).

Fact: As β →∞, πβ concentrates on{
σ : H(σ) = min

τ∈Bn
H(τ)

}
.

Construct G = (V ,E ) with V = Bn and (σ, σ′) ∈ E ⇐⇒ dH(σ, σ′) = 1.

Consider any nearest neighbor MC (Xt)t≥0 on G reversible w.r.t.πβ.
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OGP implies FEW

Let (±)σ∗ = minσ∈Bn |〈σ,X 〉|.
For ε ∈ (1/2, 1), let ρ := ρ(ε) be 2-OGP parameter.

Define

I1 =
{
σ : −ρ ≤ 1

n
〈σ, σ∗〉 ≤ ρ

}
, I2 =

{
σ : ρ ≤ 1

n
〈σ, σ∗〉 ≤ n − 2

n

}
, and I3 = {σ∗}.

Finally, let I2 := −I2 and I3 := −I3.

E. C. Kızıldağ (MIT) OGP in the NPP Sep 21, 2021 30 / 39



OGP implies FEW

Theorem (Free Energy Well in NPP)

For β = Ω(n2nε), w.h.p. (w.r.t. X
d
= N (0, In)),

min {πβ (I1) , πβ (I3)} ≥ eΩ(n)πβ (I2) .

I2 is a FEW with exponentially small Gibbs mass separating I3 and I1 ∪ I2 ∪ I3.

Consequence of 2−OGP.

Exit time from well is exponential: Slow mixing.
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FEW: Proof Sketch

Recall H(σ∗) = H(−σ∗) = Θ(2−n). Absorbing constants into β > 0,

πβ(I3) = πβ(I3) = exp
(
−β2−n

)
/Zβ.

Due to 2−OGP, minσ∈I2 H(σ) = Ω(2−εn). Moreover, |I2| ∼ 2nh((1−ρ)/2). Hence,

πβ(I2) =
∑
σ∈I2

πβ(σ) ≤ |I2| exp(−β2−εn)

Zβ
∼ 1

Zβ
exp2

(
nh

(
1− ρ

2

)
− β2−εn

)
.

Fix ε′ ∈ (ε, 1). By [KKLO86, Thm 3.1], w.p. 1− O(1/n), ∃σ′ with H(σ′) = Θ(2−ε
′n).

Via
⋃
−bound, σ′ ∈ I1 w.h.p. Hence,

πβ(I1) ≥ πβ(σ′) = exp(−β2−ε
′n)/Zβ.

Combining, we get for β = Ω(n2εn), πβ(I1) ∧ πβ(I3) ≥ eΘ(n)πβ(I2).
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From OGP to MCMC

FEW =⇒ Failure of MCMC: tensor PCA [AGJ20].

OGP =⇒ FEW.

∴ OGP =⇒ Failure of MCMC:

sparse PCA [AWZ20], principal submatrix recovery [GJS19], planted clique [GZ19].
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OGP implies FEW, which implies Failure of MCMC

Let ∂S := {σ : dH(σ, σ∗) = 1}. Initialize X0
d
= πβ(· | I3 ∪ ∂S). Define escape time

τβ := inf
{
t ≥ 1 : Xt /∈ I3 ∪ ∂S | X0 ∼ πβ(· | I3 ∪ ∂S)

}
.

Theorem (Slow Mixing)

∀ε ∈ (1/2, 1) and β = Ω(n2nε), the following holds w.h.p. as n→∞, w.r.t. X
d
= N (0, In):

πβ
(
I1 ∪ I3

)
≥ (1 + on(1))/2.

τβ = eΘ(n).
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Main Contributions

Statistical-to-Computational Gap of NPP: 2−n vs 2−Θ(log2 n).

Landscape of NPP:

Presence of 2−OGP and (Ensemble) m−OGP (with m = O(1) and m = ω(1)).
Absence of m−OGP.
Presence of a FEW.

Algorithmic hardness.

Stable algorithms fail to solve NPP with objective value below 2−ω(n log−1/5 n).
Glauber dynamics mixes slowly for sufficiently small temperature.

Expected number of local optima: eΘ(n). First moment evidence for failure of Greedy.
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Future Work

Some major challenges.

Formally verifying stability of LDM.

Proving algorithmic hardness all the way to 2−ω(
√
n log n).

- Rate 2−ω(n log−1/5 n) unimprovable by Ramsey.

Still a significant gap 2−ω(
√
n log n) vs 2−Θ(log2 n).

- Either prove hardness for 2−ω(log2 n): OGP not applicable.
- Or devise a better (polynomial-time) algorithm achieving 2−ω(log2 n).

Slow mixing

- For higher temperatures (smaller β).
- For different initialization, e.g. uniform case.
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Future Work

Bigger Challenges:

OGP rules out stable algorithms.

Can OGP rule out all polynomial-time algorithms?

Is there a problem with OGP yet admitting a polynomial-time algorithm?
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Thank you!
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Marc Mézard, Thierry Mora, and Riccardo Zecchina, Clustering of solutions in the random
satisfiability problem, Physical Review Letters 94 (2005), no. 19, 197205.

Will Perkins and Changji Xu, Frozen 1-rsb structure of the symmetric ising perceptron,
arXiv preprint arXiv:2102.05163 (2021).

Mustazee Rahman and Bálint Virág, Local algorithms for independent sets are
half-optimal, Ann. Probab. 45 (2017), no. 3, 1543–1577.

Joel Spencer, Six standard deviations suffice, Transactions of the American mathematical
society 289 (1985), no. 2, 679–706.

Paxton Turner, Raghu Meka, and Philippe Rigollet, Balancing gaussian vectors in high
dimension, Conference on Learning Theory, PMLR, 2020, pp. 3455–3486.
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E. C. Kızıldağ (MIT) OGP in the NPP Sep 21, 2021 39 / 39



Details on LDM and PDM

LDM.

Sort Xi : X ′1 < X ′2 < · · · < X ′n.

Apply differencing on X ′n and X ′n−1. Consider the list L′ = {X ′1, . . . ,X ′n−2, |X ′n − X ′n−1|}.
Recurse.

PDM.

Sort Xi : X ′1 < X ′2 < · · · < X ′n.

Applying differencing on pairs (X ′n,X
′
n−1), (X ′n−2,X

′
n−3), and so on.

Obtain a list of bn/2c items. Recurse.

A Heuristic Reasoning. Consider PDM when Xi
d
= Unif[0, 1]. Each operation reduce size by

1/n. Recurse ∼ log n rounds: n− log n.
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Details on Stable Algorithms

Algorithm A : Rn × Ω→ Bn. (Ω,Pω) coin flips of A.

X
d
= N (0, In). Success guarantee w.r.t. N (0, In)⊗ Pω:

P(X ,ω)∼N (0,In)⊗Pω

(
n−

1
2

∣∣〈X ,A(X , ω)〉
∣∣ ≤ E

)
≥ 1− pf .

Need two X ,Y
d
= N (0, In) to talk about stability. To specify PX ,Y , need Cov:

Cov(X ,Y ) = ρI . Then, with respect to (X ,Y , ω) ∼ PX ,Y ⊗ Pω,

P(X ,Y ,ω):X∼ρY ,ω∼Pω

(
dH
(
A(X , ω),A(Y , ω)

)
≤ f + L‖X − Y ‖2

2

)
≥ 1− pst.
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Details on Algorithmic Hardness Result for Stable Algorithms

f turns out to be c1n log−O(1) n for some c1 > 0.

pf , pst sub-exponential:

pf , pst ' exp2

(
−2o(logc′ n)

)
, c ′ ∈ (0, 1).

For En = ω
(
n log−1/5+ε n

)
, 0 < ε < 1/5, explicit trade-off between c ′ and ε:

c ′ '
(

1

5
− ε
)(

5 +
ε

2

)
= 1− 49ε

10
+ Θ(ε2).

Any c ′ greater than this value (and less than 1) works.

For ε = 1/5 (En = Θ(n)), c ′ → 0:

pf , pst = O(1) suffice.
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Stable Algorithms Fail for NPP: Proof Sketch

Fix En. m−OGP holds with (m, β, η): [β − η, β] is the forbidden region.

Discretization Q, required for η. T “replicas”.

Q ∼ (n/En)4+ ε
4 ∼ logO(1) n and T ∼ exp2

(
24mQ log2 Q

)
∼ 2o(n).

Proof by contradiction: Suppose randomized A exists, reduce to deterministic A.

Idea: Show a structure (contradicting with m−OGP) appears w.p.> 0.

(1) Let Xi
d
= N (0, In), 0 ≤ i ≤ T i.i.d. Interpolate:

Yi (τ) ,
√

1− τ2X0 + τXi , τ ∈ [0, 1], 1 ≤ i ≤ T .

(2) Let σi (τ) , A(Yi (τ)) ∈ Bn. Define O(ij)(τ) , n−1〈σi (τ), σj(τ)〉 ∈ [−1, 1].

(3) Discretize [0, 1]: 0 = τ0 < τ1 < · · · < τQ = 1.
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Stable Algorithms Fail for NPP: Proof Sketch

(4) Stability of A + Concentration =⇒ Stability of O(ij)(τ):∣∣∣O(ij)(τk)−O(ij)(τk+1)
∣∣∣ is small, for all 1 ≤ i < j ≤ T , 0 ≤ k ≤ Q − 1.

(5) σi (τ) identical at τ = 0: Overlaps all one. Yi (τ) independent at τ = 1.

(6) ∀S ⊂ T with |S | = m, ∃iS , jS ∈ S s.t. O(iS ,jS )(·) eventually below β − η.

(7) Stability of O(·) =⇒

∃1 ≤ k ≤ Q : O(iS ,jS )(τk) ∈ (β − η, β).

Intuitively, O can’t change abruptly.
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Stable Algorithms Fail for NPP: Proof Sketch, Graph Construction

(8) Construct G = (V ,E ): V = {1, 2, . . . ,T}.
(i , j) ∈ E iff ∃k ∈ {1, . . . ,Q}: O(ij)(τk) ∈ (β − η, β).
Color (i , j) ∈ E with first t ∈ {1, . . . ,Q} s.t., O(ij)(τt) ∈ (β − η, β) for first time.

(9) Independence number of G is bounded: α(G) ≤ m − 1.

(10) Apply Ramsey Theory twice:

Extract a large clique CM of G. Edges colored one of Q colors.
Extract a monochromatic m−clique Cm from CM .

(11) Cm contradicts with m−OGP.

(12) Track P’s via ∪-bound: P(∃ monochromatic Cm) > 0.
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A Concrete Execution of m−OGP result.

Suppose we want to rule out exponent En = n1−δ, δ ∈ (0, 1/2).

Set g(n) = nδ
′

for some δ′ with δ′ + 2δ < 1. In fact, any g(n) satisfying below works:

g(n) ∈ ω(1) and g(n) ∈ o

(
E 2
n

n log n

)
.

Then, m−OGP holds with (mn, βn, ηn), where

mn =
2n

En
= 2nδ, βn = 1− 2

g(n)

En
= 1− 2nδ

′+δ−1, and ηn =
g(n)

2n
=

1

2
n−1+δ′ .

Note that nηn = Θ(g(n)) = ω(1), hence (βn − ηn, βn) is non-vacuous.
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The Rate ω(
√
n log n) is Tight: First Moment Method Fails Beyond

We need β = 1− on(1): set β = 1− 2νn. For Σ−1 to exist, η . νn/m.

For [β − η, β] to be non-vacuous, nη = Ω(1) (as n ×Overlap ∈ Z). Hence,

nη = Ω(1) =⇒ nνn/m = Ω =⇒ nνn = Ω(m).

Computing exponent of E[·]:
P term contributes −mEn via 2−En .
log2

(
n
k

)
= (1 + on(1))k log2

n
k for k = o(n). Hence, # term contributes

2n

(
n

n 1−β
2

)m−1

∼ exp2 (n −mnνn log νn).

Combining, the exponent is
n −mnνn log νn −mEn.
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The Rate ω(
√
n log n) is Tight: First Moment Method Fails Beyond

1st moment works only if −ξ(n) = ωn(1), where ξ(n) = n −mnνn log νn −mEn.

mEn = Ω(n). As nνn = Ω(m), we get nνn = Ω(n/En).
mEn = Ω(mnνn log(1/νn)). That is, En = Ω(nνn log 1

νn
).

Using log 1/νn = ω(1), we need

En = ω (nνn) = ω (n/En) =⇒ En = ω(
√
n).

Slightly more delicate analysis yields extra
√

log n factor.
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Derrida’s REM Model

NPP is the first system for which local REM conjecture is established.

Derrida’s REM Model. A simple stochastic process: assign, to each σ ∈ Bn, a random
variable Xσ = −

√
nZσ where Zσ, σ ∈ Bn, are i.i.d. standard normal.

Perhaps the simplest model of “random disorder”.

Back to NPP : for σ ∈ Bn, denote E (σ) , n−1/2|〈σ,X 〉|. Note that E (σ) = E (−σ).

For each pair (σ,−σ); keep exactly one. Let N , 2n−1, E (1) < · · · < E (N) be energies
sorted; and σ(i) be the “spin configuration” with E (σ(i)) = E (i).

Theorem

(Informal) If i and i ′ are nearby, then (a) E (i) and E (i ′) are uncorrelated; and (b) σ(i) and σ(i ′)

are nearly orthogonal.

Namely, the system “locally” behaves like REM.
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A Phase Transition in NPP: Integer-valued Xi

Let Xi , 1 ≤ i ≤ n, be i.i.d. uniform over {0, 1, . . . ,A} where A = b2nκc.
[GW96] argued the existence of a phase transition:

For κ < κc , there exists (exponentially many) perfect partitions: with discrepancy 0 or 1
depending on parity of

∑
i Xi .

For κ > κc , w.h.p. no such partitions exist.

They predicted κc to be around 0.96.

[Mer98] argued κc = 1 + on(1).

Rigorously confirmed by [BCP01].

E. C. Kızıldağ (MIT) OGP in the NPP Sep 21, 2021 39 / 39



Statistical-to-computational gaps: Largest Clique in Dense ER Graph

Common feature in many algorithmic problems in high-dimensional statistics & random
combinatorial structures.

Largest clique/independent set problem.

G(n, 1/2).

Largest clique ∼ 2 log2 n, trivial greedy returns ∼ log2 n.

Open problem [Kar76]: Find a better polynomial-time algorithm.

Open since...
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Independent Sets in Random Sparse Graphs

Both random d−regular graph and G(n, d/n) behave essentially the same.

As n→∞, for d > 0,

1

n
|In| → αd for some sequence αd , where αd = 2(1 + od(1))

log d

d
as d →∞.

If there is a A returning, w.h.p., an independent set of size (1 + c)(log d/d)n (c can be
1/
√

2 or ε), then by interpolation one can create “forbidden structures”.

Yields a contradiction with OGP.
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OGP in Coloring of Sparse Random Graphs

Consider G(n, dn ) or Gd(n). Recall α(G)X (G) ≥ n.

[Fri90, FL92, BGT10]: α(G) ' 2(1 + od(1)) log d
d n.

X ∗ , X (G) ' (1+od (1))d
2 log d . Simple algorithm for q ≥ 2X ∗.

Space of {1, 2, . . . , q}n:

Connected large ball if q ≥ 2X ∗.
Exponentially many isolated clusters large ball if q ≤ (2− ε)X ∗.

[ACO08].

Factor 2 Gap: Analogous to gap in large clique for dense random graphs.
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OGP in Sparse Regression

X ∈ Rn×p, β∗ ∈ Rp×1, W ∈ Rn i.i.d. N (0, σ2). Observe Y = Xβ∗ + W .

Goal: Recover β∗ from (Y ,X ). ‖β‖0 ≤ k .

Convex optimization solves for n > nALG := Ω(k log p).

Brute force works iff n > nINF := Ω(k log p/ log(1 + k/σ2)).

Again a statistical-to-computational gap!

For
n < cnALG, where c > 0 is sufficiently small

OGP takes place.
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Θ(
√
n2−n): A Heuristic Calculation

Let X = (Xi : 1 ≤ i ≤ n)
d
= N (0, In). Consider a ∈ {0, 1}n and S(a) = 〈a,X 〉.

Due to concentration of measure, for many a, S(a) = Θ(
√
n).

Roughly 2n such a. By Pigeonhole, there are (distinct) a, a′ ∈ {0, 1}n such that

|S(a)− S(a′)| = O(
√
n2−n).

Set σ := a− a′ ∈ {−1, 0, 1}n. Then∣∣〈σ,X 〉∣∣ = O(
√
n2−n).
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OGP: NAE-k-SAT Problem

n Boolean variables xi , 1 ≤ i ≤ n.

Each clause Ci = xi1 ∨ x̄i2 ∨ · · · ∨ xik with k literals.

Ci , 1 ≤ i ≤ M with M = dn, d density.

k-SAT: satisfy all Ci . NAE-k-SAT: Satisfy a Ci and unsatisfy a Cj
Information-Theoretic Threshold: let ds := 2k−1 ln 2 + OK (1). Then,

P[∃(x1, . . . , xn) satisfying Ci ,∀i ] = 1 for d < ds and is = 0 for d > ds .

[AM06, COP12].

Computational Threshold: Unit clause returns an (xi : i ∈ [n]) if d < ds/k.

For d > (ds/k) ln2 k, sequential local alg fail [GS17b]; and WALKSAT fails [COHH17].
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Statistical-to-computational gaps: Planted Clique

Same story with planted clique problem...

G(n, 1/2), plant a clique PC of size k .

Problem. Observe graph, recover PC.

Impossible for k < 2 log2 n. Possible in polynomial-time if k = Ω(
√
n) [AKS98]

Hard regime. No polynomial-time algorithm known for 2 log2 n < k = o(
√
n).
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The (Infamous) Planted Clique Problem

G(n, 1
2 ). Largest clique ∼ 2 log2 n.

Select k vertices (u.a.r.). Deterministically “plant” all
(k

2

)
edges between them (PC).

Inference Problem. Recover PC from G. Various regimes on k:

Information-theoretically impossible if k < 2 log2 n.
Brute-force succeeds when k ≥ (2 + ε) log2 n.

What about polynomial-time algorithms?

Kučera [1995] A very simple algorithm for k = Ω
(√

n log2 n
)
. Based on observation: when

k = Ω
(√

n log2 n
)
, k−largest degree vertices are w.h.p. vertices of PC.

Alon, Krivelevich, and Sudakov [1998] A spectral algorithm for k = Ω(
√
n).

No polynomial-time algorithm when k = o
(√

n
)
. Again a gap.
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Kucera’s argument

Let k ≥ C
√
n log n for some C > 1. We claim w.h.p. the k-nodes having the largest number of

neighbours are those from the planted clique.

Let I
(j)
i , 1 ≤ i ≤ n and 1 ≤ j ≤ n be i.i.d. Bernoulli with I

(j)
i , 1 ≤ i ≤ n, being the “status” of

the neighbours of node j . It suffices to show

P

(∑
i

I
(j)
i ≥

n

2
+ C

√
n log n, 1 ≤ j ≤ n

)
= on(1).

Applying Bernoulli concentration,

P

(∑
i

∣∣∣∣I (j)
i −

1

2

∣∣∣∣ ≥ C
√

n log n

)
≤ exp

(
−C 2n log n

n

)
= n−C

2
.

Taking a union bound over 1 ≤ j ≤ n, it follows this probability is n−C
2+1, which is on(1)

provided C > 1.
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Planted Clique Conjecture

An instance of PCD(n, k , p): Suppose p ∈ (0, 1),

H0 ∼ G(n, p) and H1 ∼ G(n, k, p).

Here, H0 is the hypothesis that a graph is Erdös-Rényi; whereas H1 is the hypothesis that the
graph contains a planted clique of size k . Informally, one cannot recover the planted clique if
k �

√
n. Formally,

Conjecture (Conjecture 2.1 in [BBH18])

Let {An} be a sequence of (randomized) polynomial time algorithms An : Gn → {0, 1} and kn
be a sequence of positive integers with lim supn→∞ logn kn <

1
2 . Then if G is an instance of

PCD(n, k , p), it holds that

lim inf
n→∞

(
PH0(An(G ) = 1) + PH1(An(G ) = 0)

)
≥ 1.

Namely, one cannot “beat” the random guessing.
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Statistics Preserving Reductions: Reduction from Planted Clique

Problem 1 (Think of Planted Clique):

H0 : X ∼ P0
X and H1 : X ∼ P1

X .

Problem 2 (Think of spiked Wigner):

H0 : Y ∼ P0
Y and H1 : Y ∼ P1

Y .

Goal: Find a kernel WY |X such that

dTV

(
WY |XPX ,PY

)
→ 0,

as n→∞, under both H0 and H1.

A complication: By DPI, one loses “information”: recall many such problems have a signal
parameter.
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Low-Degree Methods

Hypothesis testing:
H0 : Y ∼ Q and H1 : Y ∼ P.

Planted clique: Graph Y . Q = G(n, 1/2) and P = G(n, k , 1/2).

Goal: Distinguish H0 and H1 with error probability o(1).

Likelihood ratio:

L(Y ) :=
dP
dQ

(Y ).

Do with degree ≤ D polynomials.

Adv≤D := max
f :deg(f )≤D

EP[f (Y )]√
EQ[f (Y )2]

.
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Low-Degree Methods

Recall
EP[f (Y )] = EQ[L(Y )f (Y )].

Inner product
〈f , g〉 := EQ[f (Y )g(Y )].

Then
Adv≤D = max

f :deg(f )≤D
〈L(Y ), f̂ (Y )〉, where f̂ (Y ) = f (Y )/‖f (Y )‖.

Turns out
Adv≤D :=

∥∥L≤D∥∥.
Easily computable if Q is product measure: if Q ∼ N (0, In) then take Hermite
coefficients.
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Low-Degree Methods

Informally, if ‖L≤D‖ = ω(1) then “easy”: degree ≤ D can distinguish.

If ‖L≤D‖ = O(1) then “hard”: degree ≤ D fails to distinguish.

If ‖L≤D‖ = O(1) for D, then no algorithm with running time nΘ̃(D).

D = log n proxy for polynomial-time algorithms:

If ‖L≤D‖ = O(1) for some D = ω(log n) then no poly-time algorithm.

Intuition from spectral methods: If Y has largest eigenvalue λ1, then

tr(Y k) ≈ λk1 for k ≈ O(log n).

Captures many known thresholds: PC, sparse PCA, Kesten-Stigum threshold in SBM...

E. C. Kızıldağ (MIT) OGP in the NPP Sep 21, 2021 39 / 39



Low-Degree Methods

Case Study: PC.

If k = Ω(
√
n) then ‖L≤D‖ = ω(1) for some D ' O(log n).

If k = O(n
1
2
−ε) then ‖L≤D‖ = O(1) for all D ' O(log n).

Even More Refined Thresholds:

If smallest ≤ D with ‖L≤D‖ = ω(1) is nδ (δ ∈ (0, 1)) then need exp(nδ+o(1)) time.

Some advantages:

Precise trade-off: D versus runtime.

Easy to compute. Rigorous evidence for failure of spectral methods.

Many alg. (power iteration, AMP,. . . ) realized as low-degree polynomials.

Some drawbacks:

Applicable almost solely to hypothesis testing.

Need to know orthogonal polynomials in null Q: e.g. when null is Gd(n).
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Markov Chain Mixing: Main Definitions

For Q,R on Ω, define total variation

‖Q − R‖TV := sup
A⊂Ω

∣∣Q(A)− R(A)
∣∣.

(Xt)t≥1 MC with states Ω, kernel P and stationary distribution π. Let

d(t) := sup
x∈Ω

∥∥Pt(x , ·)− π(·)
∥∥
TV

= sup
µ∈P

∥∥µPt − π
∥∥
TV
.

d(t) called distance to stationarity. Finally,

tmix(ε) := inf
{
t ≥ 1 : d(t) ≤ ε

}
.
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Markov Chain Mixing: Interpretation of Our Result

P: space of probability measures on Ω. Namely, tmix(ε) is first t s.t.∣∣µPt(A)− π(A)
∣∣ ≤ ε

for all initialization µ ∈ P and all states A ⊂ Ω.

Our result: for X0 ∼ πβ(·|I3 ∪ ∂S), and t < τβ, Xt ∈ I3 ∪ ∂S .

Let µ = πβ(·|I3 ∪ ∂S) and A = I1 ∪ I3.

I1 ∪ I3 and I3 ∪ ∂S disjoint =⇒ at t = τβ − 1, µPt(A) = 0.

π(A) = 1
2 (1 + on(1)) (part (a) of Thm). Hence,

tmix(A) ≥ τβ ∀ε < 1

2
.

.
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